Bachelor of Science in Physical Sciences
Discipline: Electronics

(Effective from Academic Year 2019-20)

Revised Syllabus as approved by

<table>
<thead>
<tr>
<th>Date:</th>
<th>Academic Council</th>
<th>No:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Executive Council</th>
<th>No:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicable for students enrolled in Regular Colleges.
List of Contents

<table>
<thead>
<tr>
<th>Preamble</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Outcome-based Curriculum Framework for Undergraduate Education in Physics</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>2. LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK IN B.SC. PHYSICAL SCIENCES PROGRAMME HAVING ELECTRONICS DISCIPLINE</td>
<td>4</td>
</tr>
<tr>
<td>2.1 NATURE AND EXTENT OF THE PROGRAMME IN B.SC. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE</td>
<td>4</td>
</tr>
<tr>
<td>2.2 AIMS OF BACHELOR’S DEGREE PROGRAMME IN B.SC. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE</td>
<td>5</td>
</tr>
<tr>
<td>3. GRADUATE ATTRIBUTES IN B.SC. PHYSICAL SCIENCE WITH ELECTRONICS DISCIPLINE</td>
<td>5</td>
</tr>
<tr>
<td>4. QUALIFICATION DESCRIPTORS FOR GRADUATES IN B.SC. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE</td>
<td>7</td>
</tr>
<tr>
<td>5. PROGRAMME LEARNING OUTCOMES IN B.SC. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE (B.SC. (PEM))</td>
<td>8</td>
</tr>
<tr>
<td>6. TEACHING-LEARNING PROCESSES</td>
<td>9</td>
</tr>
<tr>
<td>6.1 TEACHING-LEARNING PROCESSES FOR CORE COURSES</td>
<td>11</td>
</tr>
<tr>
<td>6.1.1 Teaching-Learning Processes for Theory Component of Core Courses</td>
<td>11</td>
</tr>
<tr>
<td>6.1.2 Teaching-Learning Processes for Electronics Laboratory Component of Core Courses</td>
<td>11</td>
</tr>
<tr>
<td>6.2 TEACHING-LEARNING PROCESSES FOR DISCIPLINE SPECIFIC ELECTIVES</td>
<td>12</td>
</tr>
<tr>
<td>6.3 TEACHING-LEARNING PROCESSES FOR SKILL ENHANCEMENT COURSES</td>
<td>12</td>
</tr>
<tr>
<td>7. ASSESSMENT METHODS</td>
<td>13</td>
</tr>
<tr>
<td>7.1 ASSESSMENT METHODS FOR CORE COURSES</td>
<td>13</td>
</tr>
<tr>
<td>7.1.1 Assessment Methods for Theory Component of Core Courses</td>
<td>14</td>
</tr>
<tr>
<td>7.1.2 Assessment Methods for Electronics Laboratory Component of Core Courses</td>
<td>14</td>
</tr>
<tr>
<td>7.2 ASSESSMENT METHODS FOR DISCIPLINE SPECIFIC ELECTIVES</td>
<td>14</td>
</tr>
<tr>
<td>7.3 ASSESSMENT METHODS FOR SKILL ENHANCEMENT COURSES</td>
<td>15</td>
</tr>
<tr>
<td>8. STRUCTURE OF COURSES IN B.SC. PHYSICAL SCIENCES (PEM) WITH ELECTRONICS DISCIPLINE</td>
<td>15</td>
</tr>
</tbody>
</table>
8.1 CREDIT DISTRIBUTION FOR B.SC. PHYSICAL SCIENCES (WITH PEM) 15
8.2 SEMESTER-WISE DISTRIBUTION OF COURSES 18

9. DETAILED COURSES FOR PROGRAMME IN B.SC. PHYSICAL SCIENCES, INCLUDING COURSE OBJECTIVES, LEARNING OUTCOMES, AND READINGS 23
9.1 CORE COURSES 23
9.2 DISCIPLINE SPECIFIC ELECTIVE COURSES 35
9.3 SKILL ENHANCEMENT COURSES 54

ANNEXURES 75
Preamble

Higher Education in India is in need of reform. On the one hand, while there is a need for increased access to higher education in the country, it is also necessary to improve the quality of higher education. New initiatives and sustained efforts are needed to develop and enhance the spirit of enquiry, analytical ability and comprehension skills of the young generation of students. An emerging knowledge based society requires that they are able to acquire and generate new knowledge and skills, and can creatively apply them to excel in their chosen vocations. Our higher education system needs to inculcate exemplary citizenship qualities and motivate students to contribute to the society at large. Such abilities and qualities of our youth will be crucial for the country to face the challenges of the future.

One of the reforms in undergraduate (UG) education, initiated by the University Grants Commission (UGC) at the national level in 2018, is to introduce the Learning Outcomes-based Curriculum Framework (LOCF) which makes it student-centric, interactive and outcome-oriented with well-defined aims and objectives.

The Department of Physics and Astrophysics, University of Delhi took up the task of drafting the LOCF for UG Physics courses according to guidelines sent in March 2019 by the Undergraduate Curriculum Review Committee (UGCRC)-2019 of the University of Delhi. The Committee of Courses of the Department constituted a Steering Committee, whose composition is given in Annexure 1A, to plan and formulate the LOCF for UG Physics courses of the University. The Steering Committee formed Subject Working Groups (Annexure 1B) to formulate the content of different sets of courses. The Subject Working Groups included teachers from more than twenty colleges of the University, who have experience of teaching the respective courses. About eighty faculty members from the Department of Physics and Astrophysics and Physics Departments of colleges of the University have contributed to this important task. The inputs of the Subject Working Groups were compiled, and the present document prepared by a final drafting team (Annexure 1C).

The University of Delhi offers the undergraduate B.Sc. (Honours) Physics programme, the B.Sc. Physical Sciences programme with Physics and Electronics disciplines, as well as general elective courses in Physics for students of Honours programmes in disciplines other than Physics. The LOCF has been prepared for all of the above.

An earlier draft of the LOCF of the University of Delhi was put in the public domain for stakeholders’ comments in May 2019. This was a revised version of the existing Choice Based Credit System (CBCS) undergraduate programme at the University of Delhi. We thank the stakeholders who took time and made effort to give us feedback on the earlier draft. Many of the comments received have helped us improve the LOCF draft.

We acknowledge the use of the document “Learning Outcomes based Curriculum Framework (LOCF) for Undergraduate Programme B.Sc. (Physics) 2019” put up by the UGC on its website in May 2019 (https://www.ugc.ac.in/pdfnews/1884134_LOCF-Final_Physics-report.pdf) and prepared by its Subject Expert Committee for Physics. This document has helped in clarifying the features of the LOCF and is the original source of a significant part of the text of the present document.
Keywords

Ability Enhancement Compulsory Course (AECC);
Core Courses (CC);
Discipline Specific Electives (DSE);
Learning Outcome-based Curriculum Frame work (LOCF);
Course Learning Outcomes (CLO);
Program Learning Outcomes (PLO);
Skill Enhancement Courses (SEC);
Teaching Learning Processes (TLP).
Learning Outcomes-Based Curriculum Framework for Undergraduate Education in Physics

1. INTRODUCTION

The learning outcomes-based curriculum framework for a B.Sc degree in Physical Sciences with Electronics discipline is intended to provide a comprehensive foundation to the subject, and to help students develop the ability to successfully continue with further studies and research in the subject. The framework is designed to equip students with valuable cognitive abilities and skills so that they are successful in meeting diverse needs of professional careers in a developing and knowledge-based society. The curriculum framework takes into account the need to maintain globally competitive standards of achievement in term of the knowledge and skills in Electronics, as well develop scientific orientation, enquiring spirit, problem solving skills and values which foster rational and critical thinking.

Due to the extreme diversity of our country, a central university like the University of Delhi gets students from very different academic backgrounds, regions and language zones. While maintaining high standards, the learning outcome-based curriculum provides enough flexibility to teachers and colleges to respond to diverse needs of students.

The learning outcome-based curriculum framework for undergraduate courses in Physical Sciences with Electronics discipline also allows for flexibility and innovation in the programme design to adopt latest teaching and assessment methods, and include introduction to news areas of knowledge in the fast-evolving subject domains. The process of learning is defined by the following steps which form the basis of final assessment of the achievement at the end of the program.

(i) Development of an understanding and knowledge of basic Electronics. This involves exposure to basics facts of nature discovered by Physics and Electronics through observations and experiments. The other core component of this development is introduction to Electronics concepts and principles, their theoretical relationships in laws of Electronics, and deepening of their understanding via appropriate problems.

(ii) The ability to use this knowledge to analyze new situations and learn skills and tools like laboratory techniques, computational methods, applied mathematics, embedded systems and smart modules to find solution, interpret results and make meaningful predictions.

(iii) The ability to synthesize the acquired knowledge and experience for an improved comprehension of the physical problems and to create new skills and tools for their possible solutions.
2. LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK IN B.Sc. PHYSICAL SCIENCES PROGRAMME having Electronics discipline

Note: There is one B.Sc. Physical Sciences Programme, namely B.Sc. Physical Sciences with Physics, Electronics, and Mathematics (PEM) where Electronics is one of the disciplines.

2.1 NATURE AND EXTENT OF THE PROGRAMME IN B.Sc. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE

The UG programs, B.Sc. Physical Science with Electronics discipline is builds on the basic Physics taught at the +2 level in all the schools in the country. Ideally, the +2 senior secondary school education should aim and achieve a sound grounding in understanding the basic and applied Physics with sufficient content of topics from modern Physics and contemporary areas of exciting developments in physical sciences. The curricula and syllabi should be framed and implemented in such a way that the basic connection between theory and experiment and its importance in understanding electronics is made clear to students. This is very critical in developing a scientific temperament and the urge to learn and innovate in electronics and other allied disciplines. Unfortunately the condition of our school system in most parts of the country lacks the facilities to achieve the above goal, and it is incumbent upon the college/university system to fill gaps in the scientific knowledge and understanding of our country’s youth who complete school curricula and enter university education.

Electronics, a subdivision of Physics, is an experimental science that studies systematically the applied aspects of the laws of nature operating at length scales from the sub-atomic domains to the entire universe. The scope of electronics as a subject is very broad. The core areas of study within the disciplinary/subject area of an UG programme in Electronics are: Network Analysis and Analog Electronics, Linear and Digital Integrated Circuits, Communication Electronics, and Microprocessor and Microcontroller, and specialized tools of electronics and their applications in different branches of the subject. Along with the theoretical course work students also learn laboratory methods for different branches of Electronics, specialized electronics tools and software, and scientific report writing. The latest addition to Electronics pedagogy incorporated in the LOCF framework is computational and Laboratory work, which involves adaptation of problems for algorithmic solutions, as well as modelling and simulation of Electronics circuits and embedded system. The elective modules of the framework offer students choice to gain knowledge and expertise in more specialized domains of Electronics like Semiconductor Devices, Instrumentation, Digital Signal Processing, Verilog and FPGA based system Design, Photonic Devices, Power Electronics, Antenna Theory, wireless Network

The Electronics-based knowledge and skills learnt by students also equip them to be successful in careers other than research and teaching in Electronics.
2.2 AIMS OF BACHELORS DEGREE PROGRAMME IN B.Sc. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE

The LOCF based UG educational program in B.Sc. Physical Science with Electronics aims to

- create the facilities and learning environment in educational institutions to consolidate the knowledge acquired at +2 level, motivate students to develop a deep interest in applied Physics and Electronics, and to gain a broad and balanced knowledge and understanding of physical concepts, principles and theories of Electronics.
- provide opportunities to students to learn, design and perform experiments in lab, gain an understanding of laboratory methods, design and analysis of electronic circuits and report writing, and acquire a deeper understanding of concepts, principles and theories learned in the classroom through laboratory demonstration, and computational problems and modelling.
- develop the ability in students to apply the knowledge and skills they have acquired to get to the solutions of specific theoretical and applied problems in Electronics.
- prepare students for pursuing the interdisciplinary and multidisciplinary higher education and/or research in interdisciplinary and multidisciplinary areas, as Electronics is among the most important branches of applied science necessary for interdisciplinary and multidisciplinary research.
- prepare students for developing new industrial technologies and theoretical tools for applications in diverse branches of the corporate and economic life of the country, as Electronics is one of the branches of applied science which contribute directly to technological development, and
- in light of all of the above to provide students with the knowledge and skill base that would enable them to undertake further studies in Electronics and related areas, or in interdisciplinary/multidisciplinary areas, or join and be successful in diverse professional streams including entrepreneurship and startups.

3. GRADUATE ATTRIBUTES IN B.Sc. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE

Some of the characteristic attributes of a graduate in Electronics are

- **Disciplinary knowledge**
 (i) comprehensive knowledge and understanding of major concepts, theoretical principles and experimental developments in Electronics and its different subfields like Analog Electronics, Digital Electronics, Network Analysis, VLSI technology, Communication Electronics, Microprocessor and Microcontrollers, Semiconductor Devices, Instrumentation, Digital Signal Processing, Verilog and FPGA Design, Photonic Devices, Power Electronics, Antenna Theory, wireless Network and other related fields of study, including broader interdisciplinary subfields like Physics, Chemistry, Mathematics, Life sciences, Environmental sciences, Computer science, Information Technology etc..
 (ii) ability to use Electronics laboratory skills and modern instrumentation for designing and implementing new circuits and smart systems in Electronics, interdisciplinary/multidisciplinary research areas and industrial research.

- **Skilled communicator:** Ability to transmit abstract concepts and complex information relating to all areas in Electronics in a clear and concise manner through scientific report writing. Ability to express complex relationships and information through graphical methods, circuit diagrams and proper tabulation. Ability to explain complex processes
through simulation and modelling. Ability to express complex and technical concepts orally in a simple, precise and straightforward language for better understanding.

- **Critical thinking**: Ability to distinguish between relevant and irrelevant facts and information, discriminate between objective and biased information, apply logic to arrive at definitive conclusions, find out if conclusions are based upon sufficient evidence, derive correct quantitative results, make rational evaluations, and arrive at qualitative judgments according to established rules.

- **Sense of inquiry**: Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Electronics. Planning, executing and reporting the results of theoretical or experimental investigation.

- **Team player/worker**: Capable of working effectively in diverse teams in both classroom, laboratory, Electronics workshop and in field-based situation.

- **Skilled project manager**: Capable of identifying/mobilizing appropriate resources required for a project, and managing a project through to completion, while observing responsible and ethical scientific conduct, safety and laboratory hygiene regulations and practices.

- **Digitally Efficient**: Capable of using computers for computational and simulation studies in Electronics. Proficiency in appropriate software for numerical and statistical analysis of data, accessing and using modern e-library search tools, ability to locate, retrieve, and evaluate Electronics information from renowned archives, proficiency in accessing observational and experimental data made available by renowned research labs for further analysis. Excellence in development of smart system and efficient control circuits using suitable electronic components and microcontrollers.

- **Ethical awareness/analytical reasoning**: The graduates should be capable of demonstrating the ability to think and analyze rationally with modern and scientific outlook and adopt objectives, which are unbiased and truthful in all aspects of their work. They should be capable of identifying ethical issues related to their work. They should be ready to appropriately acknowledge direct and indirect contributions received from all sources, including from other personnels in their field. They should be willing to contribute to the free development of knowledge in all forms. Further, unethical behavior such as fabrication, falsification or misrepresentation of data, or committing plagiarism, or not adhering to intellectual property rights should be avoided.

- **Social, National and International perspective**: The graduates should be able to develop a perspective about the significance of their knowledge and skills for social well-being and a sense of responsibility towards human society and the planet. They should have a national as well as an international perspective for their work and career in the chosen field of academic and research activities.

- **Lifelong learners**: Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and re-skilling in all areas of Electronics.
4. QUALIFICATION DESCRIPTORS FOR GRADUATES IN B.Sc. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE

The qualification descriptors for a B.Sc. Physical science program with Electronics discipline (with combinations of Physics, Electronics and Mathematics (PEM)) should include the following:

The graduates should be able to

- Demonstrate:

 (i) a systematic and coherent understanding of basic Electronics including the concepts, theories and relevant experimental techniques in the domains of Network Analysis, Analog Electronics, Digital Electronics, Integrated Circuits, Communication Electronics, Microprocessor, Microcontroller and of the specialized field like Semiconductor Devices, Electronic Instrumentation, Digital Signal Processing, Verilog and FPGA Design, Photonic Devices, Power Electronics, Antenna Theory, wireless Network, etc. in their choice of Discipline Specific Elective course.

 (ii) ability to relate their understanding of Electronics to other subjects like Physics, or Mathematics, which are part of their curriculum, and hence orient their knowledge and work towards multi-disciplinary/inter-disciplinary contexts and problems.

 (iii) procedural knowledge that creates different types of professionals related to different areas of study in Electronics and multi/interdisciplinary domains, including research and development, teaching, technology professions, and government and public service.

 (iv) skills in areas of specializations of their elected subfields, so that they can continue with higher studies and can relate their knowledge to current developments in those subfields.

- Use knowledge, understanding and skills required for identifying problems and issues relating to Electronics, and its interface with other subjects studied in the course, collect relevant quantitative and/or qualitative data/circuits from a wide range of sources including various research laboratories of the world, their application, and do analysis and evaluation using appropriate methodologies.

- Communicate the results of studies undertaken accurately in a range of different contexts using the main concepts, constructs and techniques of Electronics and other subjects studied in the course. Develop communication abilities to present these results in technical as well as popular science meetings.

- Ability to meet their own learning needs, drawing on a range of pedagogic material available on the internet and books, current research and development work and professional materials, and in interaction with other science professionals.

- Apply their knowledge of Electronics (theoretical and laboratory skills) to new/unfamiliar contexts. To identify and analyze problems and issues, solve complex problems in Electronics and its interface with other subjects.

- Demonstrate Electronics-related technological skills that are relevant to employment in industry and elsewhere.
5. PROGRAM LEARNING OUTCOMES IN B.Sc. PHYSICAL SCIENCES WITH ELECTRONICS DISCIPLINE (B.Sc. (PEM))

The student graduating with the Degree B.Sc. Physical sciences with Electronics discipline, B.Sc. (PEM) should be able to

- Acquire

 (i) a systematic and coherent understanding of basic Electronics including the concepts, theories and relevant experimental techniques in the domains of Network Analysis, Analog Electronics, Digital Electronics, Integrated Circuits, Communication Electronics, Microprocessor, Microcontroller and of the specialized field like Semiconductor Devices, Electronic Instrumentation, Digital Signal Processing, Verilog and FPGA Design, Photonic Devices, Power Electronics, Antenna Theory, wireless Network, etc. in their choice of Discipline Specific Elective course.

 (ii) a wide ranging and comprehensive experience in Electronics laboratory methods in experiments related to Network Analysis, Analog Electronics, Digital Electronics, Communication, Microcontroller, Semiconductor Devices, Instrumentation, Digital Signal Processing, Verilog and FPGA, Antenna’s, etc. Students acquire the ability for systematic designing and analysis of circuits, recording of proper observations, use of scientific research instruments, analysis of observational data, making suitable error estimates and scientific report writing.

 (iii) procedural knowledge that creates different types of professionals related to the disciplinary/subject area of Electronics and multi/interdisciplinary domains, including professionals engaged in research and development, teaching, technology professions and government/public service;

 (iv) skills in areas related to their specialization area within the disciplinary/subject area of Electronics.

- Demonstrate the ability to use skills in Electronics and its related areas of technology for formulating and solving problems and identifying and applying appropriate physical principles and methodologies to solve a wide range of problems associated with Electronics and its interface with other subjects studied in the course.

- Recognize the importance of modeling simulation and computing, and the role of approximation and mathematical approaches to describing the Electronic world.

- Plan and execute experiments or investigations related to Electronics and its interface with other subjects studied in the course analyze and interpret data/information collected using appropriate methods, including the use of appropriate software such as programming languages and purpose-written packages, and report accurately the findings of the experiment/investigations while relating the conclusions/findings to relevant theories.

- Demonstrate relevant generic skills and global competencies such as

 (i) problem-solving skills that are required to solve different types of Electronics-related problems with well-defined solutions, and tackle open-ended problems that belong to the disciplinary area boundaries;

 (ii) investigative skills, including skills of independent investigation of problems;

 (iii) communication skills involving the ability to listen carefully, to read texts and research papers analytically and to present complex information in a concise manner to different groups/audiences of technical or popular nature;
(iv) analytical skills involving paying attention to detail and ability to construct logical arguments, using correct technical language and ability to translate them with popular language when needed;
(v) ICT skills;
(vi) personal skills such as the ability to work both independently and in a group.

- Demonstrate professional behavior such as
 (i) being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behavior such as fabricating, falsifying or misrepresenting data or committing plagiarism;
 (ii) the ability to identify the potential ethical issues in work-related situations;
 (iii) be committed to the free development of scientific knowledge and appreciate its universal appeal for the entire humanity;
 (iv) appreciation of intellectual property, environmental and sustainability issues; and
 (v) promoting safe learning and working environment.

6. TEACHING LEARNING PROCESSES

The teaching learning processes play the most important role in achieving the desired aims and objectives of the undergraduate B.Sc. Physical Science program in Electronics (PEM). The LOCF framework emphasizes learning outcomes for every Electronics course and its parts. This helps in identifying most suitable teaching learning processes for every segment of the curricula. Electronics is basically an experimental science with a very elaborate and advanced applied structure. Systematic observations of controlled experiments open up windows to hidden properties and unexplored circuits and devices. Physics concepts and theories are meant to create a systematic understanding of the properties and laws used in Electronics. All principles and laws of Physics are accepted only after their verifications and confirmations in laboratory, or observations in the real world, which require scientists trained in appropriate experimental techniques, and engineers to design and make advanced scientific instruments and smart systems. Electronics graduates need a deep understanding of applied concepts, principles and theories of Physics, which help in gaining familiarity with different branches of Electronics. To achieve these goals, the appropriate training of young individuals to become competent scientists, researchers and engineers in future have to be accomplished. For this purpose, a very good undergraduate program, B.Sc. Physical Science in Electronics is required as a first step. An appropriate teaching-learning procedural protocol for all the colleges is therefore essential. To be specific, it is desirable to have:

- Sufficient number of teachers in permanent position to do all the class room teaching and supervise the laboratory experiments to be performed by the students.
- All teachers should be qualified as per the UGC norms and should have good communication skills.
- Sufficient number of technical and other support staff to run the laboratories, libraries, equipment and maintain the infrastructural facilities like buildings, ICT infrastructure, electricity, sanitation, etc.
- Necessary and sufficient infrastructural facilities for the class rooms, laboratories and libraries.
- Modern and updated laboratory equipment needed for the undergraduate laboratories and reference and text books for the libraries.
• Sufficient infrastructure for ICT and other facilities needed for technology-enabled learning like computer facilities, PCs, laptops, Wi-Fi and internet facilities with all the necessary software.

Teachers should make use of all the approaches for an efficient teaching-learning process i.e.:

(i) Class room teachings with lectures using traditional as well as electronic boards.
(ii) Use of Smart class rooms for simulation and demonstration for conveying the difficult concepts of Physics in class room teaching and laboratories.
(iii) Demonstration of the required experiments in laboratory and workshops on necessary apparatuses, data analysis, error estimation and scientific report writing for effective and efficient learning of laboratory techniques.
(iv) Imparting the problem solving ability which enables a student to apply physical and mathematical concepts to a new and concrete situation is essential to all courses. This can be accomplished through examples discussed in the class or laboratory, assignments and tutorials.
(v) CBCS curriculum has introduced a significant content of computational courses. Computational physics should be used as a new element in the electronics pedagogy, and efforts should be made to introduce computational problems, including simulation and modelling, in all courses.
(vi) Teaching should be complimented with students seminar to be organized very frequently.
(vii) Guest lectures and seminars should be arranged by inviting eminent teachers, and scientists.
(viii) Open-ended project work should be given to all students individually, or in group to 2-3 students depending upon the nature of the course.
(ix) Since actual undergraduate teaching is done in affiliated colleges which have differing levels of infrastructure and student requirements, the teachers should attend workshops organized by the University Department for college faculty on teaching methodology, reference materials, latest laboratory equipment and experiments, and computational physics software for achieving uniform standards. Common guidelines for individual courses need to be followed/evolved.
(x) Internship of duration varying from one week anytime in the semester, and/or 2-6 weeks during semester break and summer breaks should be arranged by the college for the students to visit other colleges/universities/HEI and industrial organizations in the vicinity. If needed, financial assistance may also be provided for such arrangements.
(xi) Special attempts should be made to develop problem-solving skills and design of laboratory experiments for demonstration. For this purpose, a mentor system may be evolved where 3-4 students may be assigned to each faculty member.
(xii) Teaching load should be managed such that the teachers have enough time to interact with the students to encourage an interactive/participative learning.

In the first year students are fresh from school. Given the diversity of their backgrounds, and the lack of adequate infrastructure and training in science learning in many schools, special care and teacher attention is essential in the first year. Mentorship with senior students and teachers can help them ease into rigors of university level undergraduate learning.

A student completing the Physical Sciences with Electronics discipline course under the CBCS takes 4 core courses in each discipline, 2 discipline specific electives (DSE) courses in each discipline, 4 skill enhancement courses (SEC) including at least one from each discipline and two ability enhancement compulsory courses (AECC). Since different categories of courses
have different objectives and intended learning outcomes, the most efficient and appropriate teaching learning processes would not be same for all categories of courses.

6.1 TEACHING LEARNING PROCESSES FOR CORE COURSES

The objective of Core courses is to build a comprehensive foundation of physics concepts, principles and laboratory skills so that a student is able to proceed to any specialized branch within Electronics. Rather than a quantitative amalgamation of disparate knowledge, it is much more preferable that students gain the depth of understanding and ability to apply what they have learnt to diverse problems.

All Core courses have a theory and an associated Electronics laboratory component. Even though the learning in theory and lab components proceeds in step, the teaching learning processes for the two components need specific and different emphases.

6.1.1 Teaching Learning Processes for Theory component of Core Courses

A significant part of the theoretical learning in core courses is done in the traditional lecture cum black-board method. Demonstrations with models, power-point projection, student project presentations, etc. are some other methods which should be judiciously used to enhance the learning experience. Problem solving should be integrated into theoretical learning of core courses and proportionally more time should be spent on it. It is advisable that a list of problems is distributed to students before the discussion of every topic, and they are encouraged to solve these in the self-learning mode, since teachers are unlikely to get time to discuss all of them in the class room.

6.1.2 Teaching Learning Processes for Electronics Laboratory component of Core Courses

Students learn essential Electronics laboratory skills mainly while preparing for experiments, performing them in the laboratory, and writing appropriate laboratory reports. Most of this learning takes place in the self-learning mode. However, teachers’ role is crucial at critical key points. Electronics laboratory learning suffers seriously if students do not get appropriate guidance at these key points. Many students get their first proper exposure to Electronics laboratory work in their first year of undergraduate studies. Hence, laboratory teaching to first year students requires special care.

Demonstration on the working of required apparatuses should be given in few beginning laboratory sessions of all courses. Sessions on the essentials of experimental data analysis, error estimation, and scientific report writing are crucial in the first year physics laboratory teaching. Once the essentials have been learnt, sessions may be taken on applications of these for specific experiments in lab courses of later years. Students should be encouraged to explore experimental physics projects outside the curricula.

Many college laboratories lack latest laboratory equipment due to resource crunch. For example very few laboratories have equipment for sensor and microprocessor based data acquisition, whose output can be directly fed into a computer for further analysis. Colleges need to make strategic planning, including student participation under teacher guided projects, to gradually get their laboratories equipped with latest equipment. The Department of the Physics and Astrophysics of the University can provide key guidance and help in this regard.

It is recommended that the maximum size of group for all Physics Laboratory courses should be 12-15 students.
6.2 TEACHING LEARNING PROCESSES FOR DISCIPLINE SPECIFIC ELECTIVES

The objective of DSE papers is to expose students to domain specific branches of Electronics and prepare them for further studies in the chosen field. While students must learn basic theoretical concepts and principles of the chosen domain, a sufficient width of exposure to diverse topics is essential in these papers. Student seminars and projects can be a very fruitful way to introduce students to the latest research level developments.

Besides a theory component, every DSE paper has either an associated tutorial, or a Electronics laboratory. Teaching learning processes for theory and Electronics laboratory components described above in sub-sections 6.1.1 and 6.1.2 for core courses, should be applicable for DSE courses too.

Tutorials provide an opportunity for attending closely to learning issues with individual students, and hence an effective means to help create interest in the subject and assess their understanding. Pre-assigned weekly problem sets and assignments help structure tutorial sessions and should be used as often as possible. Students’ performance in tutorials should be used for determining their internal assessment marks for the course.

It is recommended that the maximum size of group in a tutorial should be 8-10 students per group.

6.3 TEACHING LEARNING PROCESSES FOR SKILL ENHANCEMENT COURSES

Skill Enhancement papers are intended to help students develop skills which may or may not be directly applicable to Electronics learning. These courses introduce an element of diversity of learning environments and expectations. Efforts should be made that students gain adequate ‘hands-on’ experience in the desired skills. The theory parts of these courses are intended to help students get prepared for such experiences. Since the assessment of these courses is largely college based, teachers should make full use of it to design novel projects.

At the end, the main purpose of Electronics teaching should be to impart higher level objective knowledge to students in concrete, comprehensive and effective ways. Here, effectiveness implies gaining knowledge and skill which can be applied to solve practical problems as well as attaining the capability of logical thinking and imagination which are necessary for the creation of new knowledge and new discoveries. Once the students understand ‘why is it worth learning?’ and ‘how does it connect to the real world?’, they will embrace the curriculum in a way that would spark their imagination and instill a spirit of enquiry in them, so that in future they can opt for further investigations or research. All in all, the teacher should act as a facilitator and guide and not as a guardian of the curriculum.

It is recommended that the maximum size of group in the Laboratory for SEC courses should be 12-15 students per group.
7. ASSESSMENT METHODS

In the undergraduate education leading to the B.Sc. Physical Science degree with Electronics, the assessment and evaluation methods should focus on testing the conceptual understanding of basic concepts and theories, experimental techniques, development of mathematical skills, and the ability to apply the knowledge acquired to solve new problems and communicate the results and findings effectively.

The two perennial shortfalls of the traditional science examination process in our country are the reliance on rote learning for written exams, and a very perfunctory evaluation of laboratory skills. Greater emphasis on problem solving and less importance to textbook derivations discourages rote learning. Theory examinations should be based primarily on unseen problems. Continuous evaluation of students’ work in the laboratory, and testing them on extensions of experiments they have already performed can give a more faithful evaluation of their laboratory skills.

Needless to say, there should be a continuous evaluation system for students. This will enable teachers not only to ascertain the overall progress of learning by the students, but also to identify students who are slow learners and for whom special care should be taken. An appropriate grading system is the ‘relative grading system’. It introduces a competitive element among students, but does not excessively penalizes weaker students.

Since the Learning Objectives are defined clearly for each course in the LOCF framework, it is easier to design methods to monitor the progress in achieving the learning objectives during the course and test the level of achievement at the end of the course.

Formative Assessment for monitoring the progress towards achieving the learning objectives is an important assessment component, which provides both teachers and students feedback on progress towards learning goals. University of Delhi examination system has 20 percent internal assessment for theory component, and 50 percent for physics laboratory and computational physics laboratory components. These marks should be distributed in periodic assessments in different modes to serve the intended purpose.

Since core courses, discipline specific courses and skill enhancement courses have qualitatively different kinds of objectives and learning outcomes, one model of assessment methods will not work for these different kinds of courses.

7.1 ASSESSMENT METHODS FOR CORE COURSES

Core courses and associated Electronics laboratory curricula lead to the essential set of learning outcomes, which every Electronics graduate is expected to have. Their assessment methods require rigour, comprehensiveness and uniformity about what is minimally expected from students. Regular interactions mediated through university department among teachers teaching these courses in different colleges may prove to be helpful in this regard. Since depth of understanding of core topics is a highly desirable outcome, assessment for these courses should put greater emphasis on unseen problems, including extensions of textbook derivations done in class.
7.1.1 Assessment Methods for the Theory component of Core courses

The evaluation scheme of the University of Delhi allots 20 percent marks for internal assessment of theory papers. Teachers should use a judicious combination of the following methods to assess students for these marks: i) periodic class tests, ii) regular problem based assignments, iii) unannounced short quizzes, iv) individual seminar presentations v) longer assignments for covering theory and derivations not discussed in regular lectures, vi) True/False Tests, and vii) Multiple Choice Tests for large classes.

To help students prepare themselves for formative assessment during the semester, and to motivate them for self-learning, it is advisable that a Model Problem Set is made available to them in the beginning of the course, or problem sets are given before discussion of specific topics in class.

In preparing students for Substantive Summative Assessment at the end of the semester it is helpful if a Model/mock question paper is made available to them in the beginning of the course.

7.1.2 Assessment Methods for the Electronics Laboratory component of Core courses

The 50 percent internal assessment for the evaluation scheme for laboratory courses is best used in continuous evaluation of students’ performance in the lab. This evaluation should include these components: i) Regular evaluation of experiments regarding a) written report of each experiment and b) Viva-Voce on each experiment, ii) Test through setting experiments by assembling components, iii) written test on experiments done in the lab and data analysis, iv) Designing innovative kits to test the comprehension and analysis of the experiment done by the students, and v) audio visual recording of the experiments being performed by students and its self-appraisal.

The end semester laboratory examination should ideally involve extensions of experiments done by students during the semester. Two or more experiments can be combined for this purpose. Open ended problems for which students can get the answer by designing their own experimental method should also be tried.

7.2 ASSESSMENT METHODS FOR DISCIPLINE SPECIFIC ELECTIVES

Discipline specific courses build upon general principles learnt in core courses, and also prepare students for further studies in specific domains of Electronics. Given the time constraint of only one semester, specific domain exposure is mostly introductory in character. Assessment for these courses should have significant component of open-ended methods like seminars and project work. Students have greater chance of proving their individual initiative and ability for self-learning in these methods. These methods also have greater flexibility to reward students for out of curriculum learning.

Besides a theory component, every DSE paper has either an associated tutorial, or a Electronics laboratory, or a computational physics component. Assessment methods for theory and Electronics laboratory components described above in sub-sections 7.1.1 and 7.1.2 for core courses, should be applicable for DSE courses too.
Students should be assessed for their performance in tutorials, and this assessment should contribute to their internal assessment marks. Their work on pre-assigned problem sets/assignments, and participation in tutorial discussions should be taken into account while assessing their performance.

7.3 ASSESSMENT METHODS FOR SKILL ENHANCEMENT COURSES

Learning in skill enhancement courses is largely experience based. Student performance in these courses is best assessed under continuous evaluation. Students could be assigned a specific task for a class or group of classes, and they could be assessed for their success in meeting the task.

8. STRUCTURE OF COURSES IN B.Sc. PHYSICAL SCIENCES (PEM) WITH ELECTRONICS DISCIPLINE

8.1 CREDIT DISTRIBUTION FOR B.SC. PHYSICAL SCIENCES (WITH PEM).

The B.Sc. Physical science (PEM) programme with Electronics as one of the Discipline consists of 132 credits based on the Choice Based Credit System (CBCS) approved by the UGC with 01 hour/week for each credit for theory/tutorials and 02 hours/week for each credit of laboratory work/Hands-on exercises. Out of 132 credits, 108 credits are of core and DSE courses equally divided between Electronics discipline, Physics Discipline and Mathematics Discipline (36 credits each), 16 credits consist of Skilled Enhancement courses (SEC) which are elective and 8 credits consists of Ability Enhancement Compulsory Courses (AECC) equally divided (4 credits each) between disciplines of the Environmental sciences and Languages/communications. A student can take more than 132 credits in total (but not more than 148 credits) to qualify for the grant of the B.Sc. Physical Sciences degree as per rules and regulations of the University.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Compulsory Core Courses (CC) each with 06 credit (Total no. of Papers 12)</th>
<th>Discipline Specific Elective (DSE) each with 06 credits, Select any 02 courses from each subject A, B and C</th>
<th>Ability Enhancement Compulsory Courses (AECC) each with 04 credits, Select any 02 from 03 courses</th>
<th>Skill Enhancement Course (SEC) each with 04 credits. Select any 04 Courses. Select at least 1 from each subject A, B and C</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem I</td>
<td>CC-1A</td>
<td></td>
<td>AECC-1</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>CC-1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC-1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem II</td>
<td>CC-2A</td>
<td></td>
<td>AECC-2</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>CC-2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC-2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem III</td>
<td>CC-3A</td>
<td></td>
<td></td>
<td>SEC-1(A/B/C)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>CC-3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC-3C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem IV</td>
<td>CC-4A</td>
<td></td>
<td></td>
<td>SEC-2(A/B/C)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>CC-4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC-4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem V</td>
<td></td>
<td>DSE-1A</td>
<td></td>
<td>SEC-3(A/B/C)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSE-1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSE-1C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem VI</td>
<td></td>
<td>DSE-2A</td>
<td></td>
<td>SEC-4(A/B/C)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSE-2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSE-2C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>72</td>
<td>36</td>
<td>8</td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.2 DETAILS OF COURSES UNDER UNDERGRADUATE PROGRAMME (B.Sc. Physical Science-PEM)

<table>
<thead>
<tr>
<th>Course</th>
<th>#Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory + Practical/Tutorials</td>
<td></td>
</tr>
<tr>
<td>I. Core Course</td>
<td>12 X (4+2)* = 72</td>
</tr>
<tr>
<td>(12 Papers)</td>
<td></td>
</tr>
<tr>
<td>04 Courses from each of the 03 disciplines of choice</td>
<td></td>
</tr>
<tr>
<td>II. DSE Courses</td>
<td>6 X (4+2)* or 6 X (5+1)** =36</td>
</tr>
<tr>
<td>(6 Papers)</td>
<td></td>
</tr>
<tr>
<td>Two papers from each discipline (Physics, Electronics, Mathematics) of choice. Optional Dissertation or project work in place of one Discipline elective paper (6 credits) in 6th Semester</td>
<td></td>
</tr>
<tr>
<td>III. AECC Courses</td>
<td>2 X 4 = 8</td>
</tr>
<tr>
<td>(2 Papers of 4 credits each) Environmental Science English/MIL Communication</td>
<td></td>
</tr>
<tr>
<td>IV. SEC Courses</td>
<td>4 X (2+2)* =16</td>
</tr>
<tr>
<td>(4 Papers of 4 credits each)</td>
<td></td>
</tr>
<tr>
<td>Total credit</td>
<td>= 132</td>
</tr>
</tbody>
</table>

College should evolve a system/policy about ECA/Interest/Hobby/ Sports/NCC/ NSS/related courses on its own.
*Theory with practical/ Hands-on Exercise
**Theory with tutorials
#wherever there is practical there will be no tutorials and vice -versa.
#The size of group for practical papers is recommended to be maximum of 12 to 15 students and for tutorials 8-10 students per group.
8.2 SEMESTER-WISE DISTRIBUTION OF COURSES

CORE COURSES (CC)

Table 8.3 All CC courses of Electronics Discipline have 6 credits with 4 credits of theory and 2 credits of practical. Subject B: Electronics Discipline

<table>
<thead>
<tr>
<th>Core Course type</th>
<th>Unique Paper Code</th>
<th>Semester</th>
<th>Core papers (Subject B: Electronics Discipline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-1B</td>
<td>42511101</td>
<td>I</td>
<td>Network Analysis and Analog Electronics + Lab</td>
</tr>
<tr>
<td>CC-2B</td>
<td>42511201</td>
<td>II</td>
<td>Linear and Digital Integrated Circuits + Lab</td>
</tr>
<tr>
<td>CC-3B</td>
<td>42514305</td>
<td>III</td>
<td>Communication Electronics + Lab</td>
</tr>
<tr>
<td>CC-4B</td>
<td>42514413</td>
<td>IV</td>
<td>Microprocessor and Microcontroller + Lab</td>
</tr>
</tbody>
</table>
DISCIPLINE SPECIFIC ELECTIVES (DSE)

Table 8.4 All DSE courses of Electronic Disciplines (Subject- B) have 06 credits with 04 credits of theory and 02 credits of practical or 05 credits of theory and 01 credit of Tutorial.

Discipline Specific (Subject-B: Electronics) Elective papers (Credit: 06 each) (DSE 1B, DSE 2B): Select any 02 papers (one for each semester-V and semester-VI) from the following options (*numbers in brackets indicate number of hours/Week dedicated*)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Unique Paper Code</th>
<th>DSE papers (Subject B: Electronics Discipline)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Odd Semester – V Semester only (DSE-1B)</td>
</tr>
<tr>
<td>1</td>
<td>42517511</td>
<td>Semiconductor Devices Fabrication (4) + Lab (4)</td>
</tr>
<tr>
<td>2</td>
<td>42517512</td>
<td>Electronic Instrumentation (4) + Lab (4)</td>
</tr>
<tr>
<td>3</td>
<td>42517513</td>
<td>Digital Signal Processing (4) + Lab (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Even Semester – VI semester only (DSE-2B)</td>
</tr>
<tr>
<td>4</td>
<td>42517614</td>
<td>Verilog and FPGA based system Design (4) + Lab (4)</td>
</tr>
<tr>
<td>5</td>
<td>42517615</td>
<td>Photonic Devices and Power Electronics (4) + Lab (4)</td>
</tr>
<tr>
<td>6</td>
<td>42517616</td>
<td>Antenna Theory and wireless Network (5) + Tut (1)</td>
</tr>
<tr>
<td>7</td>
<td>42517617</td>
<td>Dissertation</td>
</tr>
</tbody>
</table>
SKILL ENHANCEMENT COURSES (SEC)

Table 8.5 All SEC* courses of Electronic Discipline (Subject-B) have 04 credits with 02 credits of theory and 02 credits of Practical/Tutorials/Projects and Field Work to be decided by the College.

Teachers may give a long duration project based on this paper.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Unique Paper Code</th>
<th>Semester</th>
<th>SEC papers* (Subject B: Electronics Discipline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32223902</td>
<td>III/IV/V/VI</td>
<td>Computational Physics Skills</td>
</tr>
<tr>
<td>2</td>
<td>32223903</td>
<td>III/IV/V/VI</td>
<td>Electrical Circuit and Network skills</td>
</tr>
<tr>
<td>3</td>
<td>32223905</td>
<td>III/IV/V/VI</td>
<td>Renewable Energy and Energy Harvesting</td>
</tr>
<tr>
<td>4</td>
<td>32223906</td>
<td>III/IV/V/VI</td>
<td>Engineering design and prototyping/Technical Drawing</td>
</tr>
<tr>
<td>5</td>
<td>32223908</td>
<td>III/IV/V/VI</td>
<td>Applied Optics</td>
</tr>
<tr>
<td>6</td>
<td>32223909</td>
<td>III/IV/V/VI</td>
<td>Weather Forecasting</td>
</tr>
<tr>
<td>7</td>
<td>XXX1</td>
<td>III/IV/V/VI</td>
<td>Introduction to Physical Computing</td>
</tr>
<tr>
<td>8</td>
<td>XXX2</td>
<td>III/IV/V/VI</td>
<td>Numerical Analysis</td>
</tr>
</tbody>
</table>

* Students pursuing B.Sc. Physical science with PEM (Physics, Electronics and Mathematics) combination should select the SEC papers related to Electronics Discipline (from Table 8.5) carefully. SEC papers are common for both Physics and Electronics Disciplines. Student should select different SEC papers in all semesters (III/IV/V and VI) for both disciplines (Subject-A and Subject-B). Same two papers of SEC to qualify B.Sc. degree is not allowed.
ABILITY ENHANCEMENT COMPULSORY COURSES (AECC)

Table 8.6 All the courses have 4 credits. The detailed content of these courses is NOT mentioned in this document.

<table>
<thead>
<tr>
<th>AECCC</th>
<th>B.Sc. Physical Science (PEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English</td>
</tr>
<tr>
<td>2</td>
<td>MIL Communications</td>
</tr>
<tr>
<td>3</td>
<td>Environment Science</td>
</tr>
</tbody>
</table>

TABLE 8.7 SEMESTER-WISE BREAKUP OF TYPES OF COURSES WITH THEIR CREDITS. Subject-A: Physics Discipline, Subject-B: Electronics Discipline, and Subject-C: Mathematics Discipline.

<table>
<thead>
<tr>
<th>Sem</th>
<th>Course opted</th>
<th>Course name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ability Enhancement Compulsory</td>
<td>English communications/ Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Course-I</td>
<td>CC-1A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-1A</td>
<td>Network Analysis and Analog Electronics (Theory + Lab)</td>
<td>4 + 2</td>
</tr>
<tr>
<td></td>
<td>Core Course-1B</td>
<td>CC-1C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-1C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Ability Enhancement Compulsory</td>
<td>English communications/ Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Course-II</td>
<td>CC-2A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-2A</td>
<td>Linear and Digital Integrated Circuits (Theory + Lab)</td>
<td>4 + 2</td>
</tr>
<tr>
<td></td>
<td>Core Course-2B</td>
<td>CC-2C</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>Core Course-3A</td>
<td>CC-3A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-3B</td>
<td>Communication Electronics (Theory + Lab)</td>
<td>4 + 2</td>
</tr>
<tr>
<td></td>
<td>Core Course-3C</td>
<td>CC-3C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course -1</td>
<td>SEC-1 (A/B/C)</td>
<td>4</td>
</tr>
<tr>
<td>Course</td>
<td>Code</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>IV Core Course-4A</td>
<td>CC-4A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>IV Core Course-4B</td>
<td>Microprocessor and Microcontroller (Theory + Lab)</td>
<td>4 + 2</td>
<td></td>
</tr>
<tr>
<td>IV Core Course-4C</td>
<td>CC-4C</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>IV Skill Enhancement Course -2</td>
<td>SEC-2 (A/B/C)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>V Discipline Specific Elective -1 A</td>
<td>DSE-1A (Subject A: Physics)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>V Discipline Specific Elective -1 B</td>
<td>DSE-1B (Subject B: Electronics) See Table 8.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>V Discipline Specific Elective -1 C</td>
<td>DSE-1C (Subject C: Mathematics)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>V Skill Enhancement Course -3</td>
<td>SEC-3 (A/B/C)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VI Discipline Specific Elective -2 A</td>
<td>DSE-1A (Subject A: Physics)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VI Discipline Specific Elective -2 B</td>
<td>DSE-1B (Subject B: Electronics) See Table 8.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VI Discipline Specific Elective -2 C</td>
<td>DSE-1C (Subject C: Mathematics)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VI Skill Enhancement Course – 4</td>
<td>SEC-4 (A/B/C)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>
9. DETAILED COURSES FOR PROGRAMME IN B.SC. PHYSICAL SCIENCES, INCLUDING COURSE OBJECTIVES, LEARNING OUTCOMES, AND READINGS

9.1. CORE COURSES

CC-1B: Network Analysis and Analog Electronics (42511101)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

- This course offers the basic knowledge to students to design and analyze the network circuit analysis and analog electronics.
- It gives the concept of voltage, current sources and various electrical network theorems. Physics of Semiconductor devices including Junction diode, Bipolar junction Transistors, Unipolar devices and their applications are discussed in detail.
- This also develops the understanding of amplifier and its applications.

Course Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes:

- To understand the concept of voltage and current sources, Network theorems, Mesh and Node Analysis.
- To develop an understanding of the basic operation and characteristics of different type of diodes and familiarity with its working and applications.
- Become familiar with Half-wave, Full-wave center tapped and bridge rectifiers. To be able to calculate ripple factor and efficiency.
- To be able to recognize and explain the characteristics of a PNP or NPN transistor.
- Become familiar with the load-line analysis of the BJT configurations and understand the hybrid model (h- parameters) of the BJT transistors.
- To be able to perform small signal analysis of Amplifier and understand its classification.
- To be able to perform analysis of two stage R-C coupled Amplifier.
- To understand the concept of positive and negative feedback along with applications of each type of feedback and the working of Oscillators.
- To become familiar with construction, working and characteristics of JFET and UJT.

Unit 1

Unit 2

Junction Diode and its applications: PN junction diode (Ideal and practical)-constructions, Formation of Depletion Layer, Diode Equation and I-V characteristics. Idea of static and dynamic resistance, dc load line analysis, Quiescent (Q) point, Zener diode, Reverse saturation current, Zener and avalanche breakdown. Qualitative idea of Schottky diode. Rectifiers-Half wave rectifier, Full wave rectifiers (center tapped and bridge), circuit diagrams, working and waveforms, ripple factor and efficiency. Filter- Shunt capacitor filter, its role in power supply, output waveform, and working. Regulation- Line and load regulation, Zener diode as voltage regulator, and explanation for load and line regulation.

(14 Lectures)

Unit 3

Bipolar Junction Transistor: Review of the characteristics of transistor in CE and CB configurations, Regions of operation (active, cut off and saturation), Current gains α and β. Relations between α and β. dc load line and Q point.

(18 Lectures)

(5 Lectures)

Unit 4

Cascaded Amplifiers: Two stage RC Coupled Amplifier and its Frequency Response.

(10 Lectures)

Feedback in Amplifiers: Concept of feedback, negative and positive feedback, advantages of negative feedback (Qualitative only).

(2 Lectures)

Sinusoidal Oscillators: Barkhausen criterion for sustained oscillations. Phase shift and Colpitt’s oscillator. Determination of Frequency and Condition of oscillation.

(5 Lectures)

Unipolar Devices: JFET. Construction, working and I-V characteristics (output and transfer), Pinch-off voltage. UJT, basic construction, working, equivalent circuit and I-V characteristics.

(4 Lectures)

PRACTICAL (60 Hours)

ELECTRONICS LAB: CC-1B LAB: NETWORK ANALYSIS AND ANALOG ELECTRONICS LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab. “
At least 06 experiments from the following besides experiment no. 1:

1. To familiarize with basic electronic components (R, C, L, diodes, transistors), digital Multimeter, Function Generator and Oscilloscope.
3. Verification of (a) Thevenin’s theorem and (b) Norton’s theorem.
4. Verification of (a) Superposition Theorem and (b) Reciprocity Theorem.
5. Verification of the Maximum Power Transfer Theorem.
6. Study of the I-V Characteristics of (a) p-n junction Diode, and (b) Zener diode.
7. Study of (a) Half wave rectifier and (b) Full wave rectifier (FWR).
8. Study the effect of (a) C filter and (b) Zener regulator on the output of FWR.
10. Study of the output and transfer I-V characteristics of common source JFET.
11. Study of Fixed Bias and Voltage divider bias configuration for CE transistor.
13. Study of the RC Phase Shift Oscillator.
14. Study the Colpitt’s oscillator.

References for Theory:

Essential Readings

1. Network, Lines and Fields, J.D.Ryder, Prentice Hall of India.

Additional Readings

References for Laboratory

CC-2B: Linear and Digital Integrated Circuits (42511201)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

- This paper aims to provide the basic knowledge of linear and digital electronics.
- It discusses about the operational amplifier and its applications. It introduces the number systems such as Decimal, Binary, Octal and Hexadecimal number systems along with their applications in arithmetic circuits.
- Boolean algebra and combinational logic circuits are also discussed.

Course Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes:

- To understand Op- Amp basics and its various applications.
- To become familiar with number systems and codes, Logic Gates, Boolean Algebra Theorems.
- To understand the minimization techniques for designing a simplified logic circuit.
- To design a half Adder, Full Adder, Half-Subtractor, Full-Subtractor.
- To understand the working of Data processing circuits Multiplexers, Demultiplexers, Decoders, Encoders.
- To become familiar with the working of flip-flop circuits, its working and applications.

Unit 1

Operational Amplifiers (Black box approach): Characteristics of an Ideal and Practical Operational Amplifier (IC 741), Open and closed loop configuration, Frequency Response. CMRR. Slew Rate and concept of Virtual Ground.

(5 Lectures)

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Summing and Difference Amplifier, (3) Differentiator, (4) Integrator, (5) Wein bridge oscillator, (6) Comparator and Zero-crossing detector, and (7) Active low pass and high pass Butter worth filter (1st order only).

(12 Lectures)

Unit 2

Number System and Codes: Decimal, Binary, Octal and Hexadecimal number systems, base conversions. Representation of signed and unsigned numbers, BCD code. Binary, octal and hexadecimal arithmetic; addition, subtraction by 2’s complement method, multiplication.

(9 Lectures)

Unit 3

Logic Gates and Boolean algebra: Truth Tables of OR, AND, NOT, NOR, NAND, XOR, XNOR, Universal Gates, Basic postulates and fundamental theorems of Boolean algebra.

(4 Lectures)
Combinational Logic Analysis and Design: Standard representation of logic functions (SOP and POS), Minimization Techniques (Karnaugh map minimization up to 4 variables for SOP).

(5 Lectures)

Unit 4

(5 Lectures)

Data processing circuits: Multiplexers, De-multiplexers, Decoders, Encoders.

(4 Lectures)

Unit 5

(6 Lectures)

(2 Lectures)

Unit 6

(4 Lectures)

(4 Lectures)

PRACTICAL (60 Hours)

ELECTRONICS LAB: CC-2B LAB: LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.”

At least 04 experiments each from section A, B and C

Section-A: Op-Amp.Circuits (Hardware design)

1. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain.
2. (a) To design inverting amplifier using Op-amp (741,351) and study its frequency response.
 (b) To design non-inverting amplifier using Op-amp (741,351) and study frequency response.
3. (a) To add two dc voltages using Op-Amp in inverting and non-inverting mode.
(b) To study the zero-crossing detector and comparator.
5. To investigate the use of an op-amp as an Integrator.
6. To investigate the use of an op-amp as a Differentiator.
7. To design a Wien bridge oscillator for given frequency using an Op-Amplifier.
8. To design a circuit to simulate the solution of simultaneous equation and 1st/2nd order differential equation.
9. Design a Butterworth Low Pass active Filter (1st order) and study frequency response.
10. Design a Butterworth High Pass active Filter (1st order) and study frequency response.
11. Design a digital to analog converter (DAC) of given specifications.

Section-B: Digital circuits (Hardware design)

1. (a) To design a combinational logic system for a specified Truth Table.
(b) To convert Boolean expression into logic circuit & design it using logic gate ICs.
(c) To minimize a given logic circuit.
2. Half Adder and Full Adder.
3. Half Subtractor and Full Subtractor.
4. 4 bit binary adder and adder-subtractor using Full adder IC.
5. To design a seven segment decoder.
6. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
7. To build JK Master-slave flip-flop using Flip-Flop ICs.
8. To build a Counter using D-type/JK Flip-Flop ICs and study timing diagram.
9. To make a Shift Register (serial-in and serial-out) using D-type/JK Flip-Flop ICs.

Section-C: SPICE/MULTISIM simulations for electronic circuits and devices

1. To verify the Thevenin and Norton Theorems.
2. Design and analyze the series and parallel LCR circuits.
3. Design the inverting and non-inverting amplifier using an Op-Amp of given gain.
4. Design and Verification of op-amp as integrator and differentiator.
5. Design the 1st order active low pass and high pass filters of given cutoff frequency.
6. Design a Wein’s Bridge oscillator of given frequency.
8. Design 4-bit asynchronous counter using Flip-Flop ICs.
9. Design the CE amplifier of a given gain and its frequency response.

References for Theory

Essential Readings

References for Laboratory

CC-3B : Communication Electronics (42514305)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

• This paper aims to describe the concepts of electronics in communication.
• Communication techniques based on Analog Modulation, Analog and digital Pulse Modulation including PAM, PWM, PPM, ASK, PSK, FSK are described in detail.
• Communication and Navigation systems such as GPS and mobile telephony system are introduced.

Course Learning Outcomes

At the end of this course, students will be able to develop following learning outcomes:

• the concepts of electronics in communication, introduction to the principle, performance and applications of communication systems.
• various means and modes of communication, electromagnetic communication spectrum with an idea of frequency allocation for radio communication system in India.
• an insight on the use of different modulation and demodulation techniques used in analog communication.
• analyze different parameters of analog communication techniques.
• learn the generation and detection of a signal through pulse and digital modulation techniques and multiplexing.
• In-depth understanding of different concepts used in a satellite communication system, Mobile radio propagation, cellular system design and understand mobile technologies like GSM and CDMA, mobile communication generations 2G, 3G, and 4G with their characteristics and limitations.

Unit 1

(4 Lectures)

Analog Modulation: Amplitude Modulation, modulation index and frequency spectrum. Generation of AM (Emitter Modulation), Amplitude Demodulation (diode detector), Single Sideband (SSB) systems, advantages of SSB transmission, Concept of Single side band generation and detection. Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, equivalence between FM and PM, Generation of FM using VCO, FM detector (slope detector), Qualitative idea of Super heterodyne receiver.

(12 Lectures)

Unit 2

Analog Pulse Modulation: Channel capacity, Sampling theorem, Basic Principles-PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing (time division multiplexing and frequency division multiplexing).

(9 Lectures)

Unit 3

Digital Pulse Modulation: Need for digital transmission, Pulse Code Modulation, Digital Carrier Modulation Techniques, Sampling, Quantization and Encoding. Concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Binary Phase Shift Keying (BPSK).

(10 Lectures)

Unit 4

Satellite Communication: Introduction, need, Geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Transponders (C - Band), Uplink and downlink, path loss, Satellite visibility, Ground and earth stations. Simplified block diagram of earth station.

(10 Lectures)

Unit 5

Mobile Telephony System: Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset, 2G, 3G and 4G concepts (qualitative only), GPS navigation system (qualitative idea only).

(15 Lectures)

Practical (60 Hours)

ELECTRONICS LAB: CC-3B LAB: COMMUNICATION ELECTRONICS LAB

“Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.
Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.”

At least 05 experiments from the following:

1. To design an Amplitude Modulator using Transistor
2. To study envelope detector for demodulation of AM signal
3. To study FM - Generator and Detector circuit
4. To study AM Transmitter and Receiver
5. To study FM Transmitter and Receiver
6. To study Time Division Multiplexing (TDM)
7. To study Pulse Amplitude Modulation (PAM)
8. To study Pulse Width Modulation (PWM)
9. To study Pulse Position Modulation (PPM)
10. To study ASK, PSK and FSK modulators

References for Theory

Essential Readings

Additional Readings

References for Laboratory

CC-4B: Microprocessor and Microcontroller (42514413)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

• This paper introduces students with the architecture of microprocessor 8085 and microcontroller 8051.
• Here, students will learn about the 8085 programming, subroutines, Timing and control circuitry.
• Also, students will gain an exposure of 8051 I/O port programming and their addressing modes.
• By the end of syllabus, students will have an introductory knowledge of embedded systems.

Course Learning Outcomes

After having this course one is expected to have understanding of:
• designing and developing embedded systems.
• major components that constitute an embedded system.
• the architecture of a 8085 Microprocessor.
• assembly language programming essentials
• a microcontroller, microcomputer embedded system.
• the architecture of a 8051 microcontroller and its concepts like I/O operations, interrupts, programming of timers and counters.
• Interfacing of 8051 microcontroller with peripherals
• Implementing small programs to solve well-defined problems on an embedded platform.

Unit 1

(5 Lectures)

(8 Lectures)

Unit 2

(10 Lectures)
Unit 3

8051 Microcontroller: Introduction and block diagram of 8051 microcontroller, architecture of 8051, overview of 8051 family, 8051 assembly language programming, Program Counter and ROM memory map, Data types and directives, Flag bits and Program Status Word (PSW) register, Jump, loop and call instructions.

(12 Lectures)

8051 I/O port programming: Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description & their functions, I/O port programming in 8051 (using assembly language), I/O programming: Bit manipulation.

(5 Lectures)

Unit 4

8051 Programming: 8051 addressing modes and accessing memory locations using various addressing modes, assembly language instructions using each addressing mode, arithmetic and logic instructions, 8051 programming in C: for time delay and I/O operations and manipulation, for arithmetic and logic operations, for ASCII and BCD conversions.

(15 Lectures)

Unit 5

Introduction to embedded system: Embedded systems and general purpose computer systems. Architecture of embedded system. Classifications, applications and purpose of embedded systems.

(5 Lectures)

PRACTICAL (60 Hours)

ELECTRONICS LAB: CC-4B LAB: MICROPROCESSOR AND MICROCONTROLLER LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.”

At least 06 experiments each from Section-A and Section-B

Section-A: Programs using 8085 Microprocessor

1. Addition and subtraction of numbers using direct addressing mode
2. Addition and subtraction of numbers using indirect addressing mode
3. Multiplication by repeated addition.
4. Division by repeated subtraction.
5. Handling of 16-bit Numbers.
6. Use of CALL and RETURN Instruction.
7. Block data handling.
8. Other programs (e.g. Parity Check, using interrupts, etc.).
Section-B: Experiments using 8051 Microcontroller

1. To find that the given numbers is prime or not.
2. To find the factorial of a number.
3. Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.
4. Use one of the four ports of 8051 for O/P interfaced to eight LED’s. Simulate binary counter (8 bit) on LED’s .
5. Program to glow the first four LEDs then next four using TIMER application.
6. Program to rotate the contents of the accumulator first right and then left.
7. Program to run a countdown from 9-0 in the seven segment LED display.
8. To interface seven segment LED display with 8051 microcontroller and display ‘HELP’ in the seven segment LED display.
9. To toggle ‘1234’ as ‘1324’ in the seven segment LED display.
10. Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clock wise direction.
11. Application of embedded systems: Temperature measurement & display on LCD.

References for Theory

Essential Readings

Additional Readings

1. Microprocessor and Microcontrollers, N. Senthil Kumar, 2010, Oxford University Press

References for Laboratory

2. Embedded Microcomputer systems: Real time interfacing, J.W.Valvano 2011, Cengage Learning
9.2 DISCIPLINE SPECIFIC (PHYSICS ELECTIVE) SELECT TWO PAPERS

DSE-1B: Semiconductor Devices Fabrication (42517511)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

• This course provides a review of basics of semiconductors such as energy bands, doping, defects etc. and introduces students to various semiconductor and memory devices.
• Thin film growth techniques and processes including various vacuum pumps, sputtering, evaporation, oxidation and VLSI processing are described in detail.
• By the end of the syllabus, students will have an understanding of MEMS based transducers.

Course Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes:

• Learn to distinguish between single crystal, polycrystalline and amorphous materials based on their structural morphology and learn about the growth of single crystals of silicon, using Czochralski technique, on which a present day electronics and IT revolution is based.
• Students will understand about the various techniques of thin film growth and processes.
• Gain knowledge about characteristics of semiconductor devices (p-n junction diode, MOS, MOSFET, TUNNEL diode)
• Understanding of characteristics of Volatile and Non Volatile memory element and their classifications.
• Appreciate the various VLSI fabrication technologies and learn to design the basic fabrication process of R, C, P- N Junction diode, BJT, JFET, MESFET, MOS, NMOS, PMOS and CMOS technology.
• Gain basic knowledge on overview of MEMS (MicroElectro-Mechanical System) and MEMS based transducers.

Unit 1

(5 Lectures)

Vacuum Pumps: Primary Pump (Mechanical) and Secondary Pumps (Diffusion, Turbo-molecular, Cryopump, Sputter - Ion)– basic working principle, Throughput and Characteristics in reference to Pump Selection. Vacuum Gauges (Pirani and Penning).

(6 Lectures)
Unit 2

Thin Film Growth Techniques and Processes: Sputtering, Evaporation (Thermal, electron-Beam, Pulse Laser Deposition (PLD), Chemical Vapor Deposition (CVD). Epitaxial Growth, Deposition by Molecular Beam Epitaxy (MBE).

(9 Lectures)

(5 Lectures)

Unit 3

Semiconductor Devices: Review of p-n Junction diode, Metal-Semiconductor junction, Metal-Oxide-Semiconductor (MOS) capacitor and its C-V characteristics, MOSFET (enhancement and depletion mode) and its high Frequency limit. Microwave Devices: Tunnel diode.

(6 Lectures)

Unit 4

Memory Devices: Volatile Memory: Static and Dynamic Random Access Memory (RAM), Complementary Metal Oxide Semiconductor (CMOS) and NMOS, Non-Volatile - NMOS (MOST, FAMOS), Ferroelectric Memories, Optical Memories, Magnetic Memories, Charge Coupled Devices (CCD).

(10 Lectures)

Unit 5

(12 Lectures)

Unit 6

(7 Lectures)

PRACTICAL (60 Hours)
PRACTICALS-DSE-1B LAB: SEMICONDUCTOR DEVICES FABRICATION LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions."
Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.”

At least 05 experiments from the following:

1. Fabrication of alloy p-n Junction diode and study its I-V Characteristics.
2. Study the output and transfer characteristics of MOSFET.
3. To design and plot the static & dynamic characteristics of digital CMOS inverter.
4. Create vacuum in a small tube (preferably of different volumes) using a Mechanical rotary pump and measure pressure using vacuum gauges.
5. Deposition of Metal thin films/contacts on ceramic/thin using Thermal Evaporation and study IV characteristics.
6. Selective etching of Different Metallic thin films using suitable etchants of different concentrations.
7. Wet chemical etching of Si for MEMS applications using different concentration of etchant.
8. Calibrate semiconductor type temperature sensor (AD590, LM 35, LM 75).
9. Quantum efficiency of CCDs.
10. To measure the resistivity of a semiconductor (Ge) crystal with temperature (up to 150C) by four-probe method.
11. To fabricate a ceramic and study its capacitance using LCR meter.
12. To fabricate a thin film capacitor using dielectric thin films and metal contacts and study its capacitance using LCR meter.
13. Study the linearity characteristics of (a) Pressure using capacitive transducer (b) Distance using ultrasonic transducer

References for Theory

Essential Readings

2. Handbook of Thin Film Technology, Leon I. Maissel and Reinhard Glang.
4. Introduction to Semiconductor materials and Devices, M. S. Tyagi, John Wiley & Sons VLSI Fabrication Principles (Si and GaAs), S.K. Gandhi, John Wiley & Sons, Inc.

References for Laboratory

DSE-1B : Electronic Instrumentation (42517512)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

• This course aims to provide an exposure on basics of measurement and instrumentation and its various aspects and their usage through hands-on mode.
• It also aims to provide exposure of various measurement instruments such as power supply, oscilloscope, multivibrators, signal generators are discussed in detail.
• It also aims to develop an understanding of virtual instrumentation and transducers.

Course Learning Outcomes

At the end of this course, students will have understanding of:

• basic principles of the measurement and errors in measurement, specifications of basic Measurement instruments and their significance with hands on mode.
• principles of voltage measurement, advantages of electronic voltmeter over conventional multimeter in terms of sensitivity etc.
• measurement of impedance using bridges, Power supply, Filters, IC regulators and Load and line regulation.
• Specifications of CRO and their significance, the use of CRO and DSO for the measurement of voltage (dc and ac), frequency and time period.
• Multivibrators, working circuits of Astable and monostable multivibrators.
• Phase Locked Loop (PLL), Voltage controlled oscillators and lock-In amplifier.
• explanation and specifications of Signal and pulse Generators
• the Interfacing techniques, Audrino microcontroller & interfacing software, Understanding and usage of Transducers.

Unit 1

(3 Lectures)

(12 Lectures)
Unit 2

Power supply: Block Diagram of a Power Supply, Qualitative idea of C and L Filters. IC Regulators (78XX and 79XX), Line and load regulation, Short circuit protection. Idea of switched mode power supply (SMPS) & uninterruptible power supply (UPS).

(4 Lectures)

Oscilloscope: Block Diagram, CRT, Vertical Deflection, Horizontal Deflection. Screens for CRT, Oscilloscope probes, measurement of voltage, frequency and phase by Oscilloscope. Digital Storage Oscilloscope. LCD display for instruments.

(10 Lectures)

Unit 3

Multivibrators (IC 555): Block diagram, Astable & Monostable multivibrator circuits. Phase Locked Loop (PLL): Basic Principles, Phase detector (XOR & edge triggered), Voltage Controlled Oscillator (Basics, varactor), lock and capture. Basic idea of PLL IC (565 or 4046). Lock-in-amplifier (qualitative only).

(11 Lectures)

Signal Generators: Function generator, Pulse Generator(qualitative only).

(3 Lectures)

Unit 4

(5 Lectures)

Transducers: Classification of transducers, Basic requirement/characteristics of transducers, Active and Passive transducers, Resistive (Potentiometer- Theory, temperature compensation and applications), Capacitive (variable air gap type), Inductive (LVDT) and piezoelectric transducers. Measurement of temperature (RTD, semiconductor IC sensors), Light transducers (photo resistors & photovoltaic cells).

(12 Lectures)

PRACTICAL (60 Hours)
PRACTICALS-DSE-1B LAB: ELECTRONIC INSTRUMENTATION LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

At least 06 experiments from the following

1. Measurement of resistance by Wheatstone bridge and measurement of bridge sensitivity.
3. To determine the Characteristics of resistance transducer - Strain Gauge (Measurement of Strain using half and full bridge).
4. To determine the Characteristics of LVDT.
5. To determine the Characteristics of Thermistors and RTD.
7. Design a regulated power supply of given rating (5 V or 9V).
8. To design an Astable Multivibrator of given specification using IC 555 Timer.
9. To design a Monostable Multivibrator of given specification using IC 555 Timer.
10. To design and study the Sample and Hold Circuit.
11. To plot the frequency response of a microphone.
12. Glow an LED via USB port of PC.
13. Sense the input voltage at a pin of USB port and subsequently glow the LED connected with another pin of USB port.

References for Theory

Essential Readings

References for Laboratory

Course Objective

• This paper describes the discrete-time signals and systems, Fourier Transform Representation of Aperiodic Discrete-Time Signals.
• This paper also highlights the concept of filters and realization of Digital Filters.
• At the end of the syllabus, students will develop an understanding of Discrete and fast Fourier Transform.

Course Learning Outcomes

At the end of this course, students will be able to develop following learning outcomes:

• Students will learn basic discrete-time signal and system types, convolution sum, impulse and frequency response concepts for linear time-invariant (LTI) systems.
• The student will be in position to understand use of different transforms and analyze the discrete time signals and systems. They will learn to analyze a digital system using z-transforms and discrete time Fourier transforms, region of convergence concepts, their properties and perform simple transform calculations.
• The student will realize the use of LTI filters for filtering different real world signals. The concept of transfer Function and difference-Equation System will be introduced. Also, they will learn to solve Difference Equations.
• Students will develop an ability to analyze DSP systems like linear-phase, FIR, IIR, All-pass, averaging and notch Filter etc.
• Students will be able to understand the discrete Fourier transform (DFT) and realize its implementation using FFT techniques.
• Students will be able to learn the realization of digital filters, their structures, along with their advantages and disadvantages. They will be able to design and understand different types of digital filters such as finite & infinite impulse response filters for various applications.

Unit 1

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the Independent Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd Signals, Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum; Graphical Method; Analytical Method, Properties of Convolution; Commutative; Associative; Distributive; Shift; Sum Property System Response to Periodic Inputs, Relationship Between LTI System Properties and the Impulse Response; Causality; Stability; Invertibility, Unit Step Response.

(10 Lectures)
Unit 2

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-Time Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting; Differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property. The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z- Transform, Relationship Between z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of- Convergence; Properties of ROC, Properties; Time Reversal; Differentiation in the z-Domain; Power Series Expansion Method (or Long Division Method); Analysis and Characterization of LTI Systems; Transfer Function and Difference-Equation System. Solving Difference Equations.

(15 Lectures)

Unit 3

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR Digital Filters, Simple IIR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.

(5 Lectures)

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting; Circular Time Reversal; Multiplication Property; Parseval’s Relation, Linear Convolution Using the DFT (Linear Convolution Using Circular Convolution), Circular Convolution as Linear Convolution with aliasing.

(10 Lectures)

Unit 4

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity Properties of the Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm; Decimation-In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms.

(5 Lectures)

Unit 5

Realization of Digital Filters: Non Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures (Transposed Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR systems; Direct-Form I.

Finite Impulse Response Digital Filter: Advantages and Disadvantages of Digital Filters, Types of Digital Filters: FIR and IIR Filters; Difference Between FIR and IIR Filters, Desirability of Linear-Phase Filters, Frequency Response of Linear-Phase FIR Filters, Impulse Responses of Ideal Filters, Windowing Method; Rectangular; Triangular; Kaiser Window, FIR Digital Differentiators.

Infinite Impulse Response Digital Filter: Design of IIR Filters from Analog Filters, IIR Filter Design by Approximation of Derivatives, Backward Difference Algorithm, Impulse Invariance Method.

(15 Lectures)

PRACTICAL (60 Hours, 2 Credits)
PRACTICALS-DSE-1B LAB: DIGITAL SIGNAL PROCESSING LAB

"Introduction to Numerical computation software Scilab/Matlab be introduced in the lab."
Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab”

At least 06 experiments from the following using Scilab/Matlab.

1. Write a program to generate and plot the following sequences: (a) Unit sample sequence $\delta(n)$, (b) unit step sequence $u(n)$, (c) ramp sequence $r(n)$, (d) real valued exponential sequence $x(n) = (0.8)^n u(n)$ for $0 \leq n \leq 50$.

2. Write a program to compute the convolution sum of a rectangle signal (or gate function) with itself for $N = 5$

3. An LTI system is specified by the difference equation $y(n) = 0.8y(n-1) + x(n)$
 (a) Determine $H(e^{j\omega})$
 (b) Calculate and plot the steady state response $y_\text{ss}(n)$ to
 $$x(n) = \cos(0.5\pi n)u(n)$$

4. Given a casual system $y(n) = 0.9y(n-1) + x(n)$
 (a) Find $H(\zeta)$ and sketch its pole-zero plot
 (b) Plot the frequency response $|H(e^{j\omega})|$ and $\angle H(e^{j\omega})$

5. Design a digital filter to eliminate the lower frequency sinusoid of $x(t) = \sin 7t + \sin 200t$. The sampling frequency is $f_s = 500 \text{ Hz}$. Plot its pole zero diagram, magnitude response, input and output of the filter.

6. Let $x(n)$ be a 4-point sequence:
 $$x(n) = \{1,1,1,1\} = \begin{cases} 1 & 0 \leq n \leq 3 \\ 0 & \text{otherwise} \end{cases}$$
 Compute the DTFT $X(e^{j\omega})$ and plot its magnitude
 (a) Compute and plot the 4 point DFT of $x(n)$
 (b) Compute and plot the 8 point DFT of $x(n)$ (by appending 4 zeros)
 (c) Compute and plot the 16 point DFT of $x(n)$ (by appending 12 zeros

7. Let $x(n)$ and $h(n)$ be the two 4-point sequences,
 $$x(n) = \{1,2,2,1\}$$
 $$h(n) = \{1,-1,-1,1\}$$
 Write a program to compute their linear convolution using circular convolution.

8. Using a rectangular window, design a FIR low-pass filter with a pass-band gain of unity, cut off frequency of 1000 Hz and working at a sampling frequency of 5 KHz. Take the length of the impulse response as 17.

9. Design an FIR filter to meet the following specifications:
 - Passband edge $F_p = 2 \text{ KHz}$
 - Stopband edge $F_s = 5 \text{ KHz}$
 - Passband attenuation $A_p = 2 \text{ dB}$
Stopband attenuation $A_s = 42 \, dB$

Sampling frequency $F_s = 20 \, KHz$

10. The frequency response of a linear phase digital differentiator is given by

$$H_d(e^{j\omega}) = j\omega e^{-j\omega} |w| \leq \pi$$

Using a Hamming window of length $M = 21$, design a digital FIR differentiator. Plot the amplitude response.

References for Theory

Essential Readings

1. Digital Signal Processing, Tarun Kumar Rawat, 2015, Oxford University Press, India

Additional Readings

References for Laboratory

Course Objective

- This paper provides a review of combinational and sequential circuits such as multiplexers, demultiplexers, decoders, encoders and adder circuits.
- Evolution of Programmable logic devices such as PAL, PLA and GAL is explained.
- At the end of the syllabus, students will be able to understand the modeling of combinational and sequential circuits (including FSM and FSMD) with Verilog Design.

Course Learning Outcomes

This paper discusses the fundamental Verilog concepts in-lieu of today's most advanced digital design techniques. At the end of this course, students will be able to develop following learning outcomes:

- Understand the steps and processes for design of logic circuits and systems.
- Be able to differentiate between combinational and sequential circuits.
- Be able to design various types of state machines.
- Be able to partition a complex logic system into elements of data-path and control path.
- Understand various types of programmable logic building blocks such as CPLDs and FPGAs and their tradeoffs.
- Be able to write synthesizable Verilog code.
- Be able to write a Verilog test bench to test various Verilog code modules.
- Be able to design, program and test logic systems on a programmable logic device (CPLD or FPGA) using Verilog.

Unit 1

(20 lectures)

Unit 2

(20 lectures)

Unit 3
Verilog HDL: Introduction to HDL. Verilog primitive operators and structural Verilog Behavioral Verilog. Design verification. Modeling of combinational and sequential circuits (including FSM and FSMD) with Verilog Design examples in Verilog.
(20 lectures)

PRACTICAL (60 Hours)
PRACTICALS-DSE-2B LAB: VERILOG AND FPGA LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.”

At least 08 experiments from the following:

1. Write code to realize basic and derived logic gates.
2. Half adder, Full Adder using basic and derived gates.
3. Half subtractor and Full Subtractor using basic and derived gates.
5. Multiplexer (4x1) and Demultiplexer using logic gates.
6. Decoder and Encoder using logic gates.
7. Clocked D, JK and T Flip flops (with Reset inputs).
8. 3-bit Ripple counter.
9. To design and study switching circuits (LED blink shift).
10. To design traffic light controller.
11. To interface a keyboard.
12. To interface a LCD using FPGA.
13. To interface multiplexed seven segment display.
14. To interface a stepper motor and DC motor.
15. To interface ADC 0804.

References for Theory

Essential Readings

3. FPGA Based System Design, Wayne Wolf; Pearson Education,

Additional Readings

1. Digital Signal Processing with FPGAs, U. Meyer Baese; Springer, 2004
2. Verilog HDL primer- J. Bhasker. BSP, 2003
References for Laboratory

DSE-2B: Photonic devices and Power Electronics (42517615)
Credit: 06 (Theory-04, Practical-02)
Theory: 60 Hours
Practical: 60 Hours

Course Objective

- This paper provides an insight on photonic devices such as Light Emitting Diodes, Semiconductor Laser, Laser diode, Photodetectors, Solar cell etc.
- Also, students will learn about LCD displays, their advantages over LED displays, evolution, elements, modes and configurations of optical fiber system.
- Emphasis is being laid to introduce students to power electronics, its need and applications.

Course Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes:

- Develop understanding of application of fundamental laws of physics in such optoelectronics areas as telecommunications and power electronics for automation in industries.
- Acquire essential laboratory skills in designing experiments, assembling standard optical tools for optical experimentation and power electronics and analyzing acquired data.
- Identify the critical areas in application levels and derive typical alternative solutions, select suitable power converters to control Electrical Motors and other industry grade apparatus.
- Develop understanding to compare performance and basic operation of various power semiconductor devices, passive components and various switching circuits.
- Develop understanding of Basic circuit of power rectifiers and inverters.

Unit 1

(12 Lectures)

Unit 2

Photodetectors: Photoconductor. Photodiodes (p-i-n, avalanche) and Photo transistors, quantum efficiency and responsivity. Photomultiplier tube.

(5 Lectures)

Solar Cell: Construction, working and characteristics.

(2 Lectures)

LCD Displays: Types of liquid crystals, Principle of Liquid Crystal Displays, applications, advantages over LED displays.

(4 Lectures)

Unit 3

(13 Lectures)

Unit 4

Power Devices: Need for semiconductor power devices, Power MOSFET (Qualitative). Introduction to family of thyristors. Silicon Controlled Rectifier (SCR)- structure, I-V characteristics, Turn-On and Turn-Off characteristics, ratings, Gate-triggering circuits. Diac and Triac- Basic structure, working and V-I characteristics. Application of Diac as a triggering device for Triac.

(10 Lectures)

Insulated Gate Bipolar Transistors (IGBT): Basic structure, I-V Characteristics, switching characteristics, device limitations and safe operating area (SOA).

(2 Lectures)

Unit 5

Applications of SCR: Phase controlled rectification, AC voltage control using SCR and Triac as a switch. Power Invertors- Need for commutating circuits and their various types, dc link invertors, Parallel capacitor commutated invertors, Series Invertor, limitations and its improved versions, bridge invertors.

(12 Lectures)

PRACTICAL (60 Hours, 2 Credits)
PRACTICALS-DSE-2B LAB: PHOTONIC DEVICES AND POWER ELECTRONICS LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions."
Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.”

At least 06 experiments from the following:

1. To determine wavelength of sodium light using Michelson’s Interferometer.
2. Diffraction experiments using a laser.
4. To determine characteristics of (a) LEDs, (b) Photo voltaic cell and (c) Photo diode.
5. To study the Characteristics of LDR and Photodiode with (i) Variable Illumination intensity, and (ii) Linear Displacement of source.
6. To measure the numerical aperture of an optical fiber.
7. Output and transfer characteristics of a power MOSFET.
8. Study of I-V characteristics of SCR.
9. SCR as a half wave and full wave rectifiers with R and RL loads.
10. AC voltage controller using TRIAC with UJT triggering.
11. Study of I-V characteristics of DIAC.
12. Study of I-V characteristics of TRIAC

References for Theory

Essential Readings

3. Electronic Devices and Circuits, David A. Bell, 2015, Oxford University Press.

References for Laboratory

Course Objective

- This course gives an overview of wireless communication elements and networks.
- Students will develop an understanding of basics of antenna, its various parameters, its usage as a transmitter and receiver.
- Cellular concept and system design fundamentals are described and the evolution of current wireless systems real world such as 2G, 3G, 4G and LTE networks is discussed.

Course Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes:

- Identify basic antenna parameter (Radiating wire Structures).
- Determine directions of maximum signal radiations and the nulls in the radiation patterns.
- Design array antenna systems from specifications.
- Identify the characteristics of radio-wave propagation.
- Identify Wireless Networks 4G and LTE, and 5G.
- Design Cellular Systems

Unit 1

ANTENNA THEORY:

Introduction: Antenna as an element of wireless communication system, Antenna radiation mechanism, Types of Antennas, Fundamentals of EMFT: Maxwell’s equations and their applications to antennas.

(7 Lectures)

Antenna Parameters: Antenna parameters: Radiation pattern (polarization patterns, Field and Phase patterns), Field regions around antenna, Radiation intensity, Beam width, Gain, Directivity, Polarization, Bandwidth, Efficiency and Antenna temperature.

(9 Lectures)

Unit 2

Antenna as a Transmitter/Receiver: Effective Height and Aperture, Power delivered to antenna, Input impedance. Radiation from an infinitesimal small current element, Radiation from an elementary dipole (Hertzian dipole), Reactive, Induction and Radiation fields, Power density and radiation resistance for small current element and half wave dipole antenna.

(12 Lectures)

Unit 3

Radiating wire Structures (Qualitative idea only): Monopole, Dipole, Folded dipole, Loop antenna and Biconical broadband Antenna. Basics of Patch Antenna and its design. Examples of Patch antenna like bowtie, sectoral, fractal, etc.

(6 Lectures)

(9 Lectures)

Unit 4

WIRELESS NETWORKS:

(10 Lectures)

Unit 5

Modern Wireless Communication Systems: Second Generation (2G) Cellular Networks, Third Generation (3G) Wireless Networks, Wireless Local Loop (WLL), Wireless Local Area Networks (WLANs), Bluetooth and Personal Area Networks (PANs). Idea about Wi-Fi, 4G and LTE, and 5G.

(10 Lectures)

Unit 6

(12 Lectures)

References for Theory

Essential Readings

Additional Readings

DSE-2B: Dissertation (42517617)
Credit: 08

Course Objective

Dissertation involves project work with the intention of exposing the student to research/development. It involves open ended learning based on student ability and initiative, exposure to scientific writing and inculcation of ethical practices in research and communication.

Course Learning Outcomes

- exposure to research methodology
- picking up skills relevant to dissertation project, such as experimental skills in the subject, computational skills, etc.
- development of creative ability and intellectual initiative
- developing the ability for scientific writing
- becoming conversant with ethical practices in acknowledging other sources, avoiding plagiarism, etc.

Guidelines for dissertation:

1. The dissertation work should not be a routine experiment or project at the undergraduate level. It should involve more than text book knowledge. Referring text books for preparation and understanding concepts is allowed; however one component of the dissertation must include study of research papers or equivalent research material and/or open ended project.

2. The total number of dissertations allowed should be limited to 5% of the total strength of the students in the programme. However, students having national scholarships like NTSE, KVPY, INSPIRE, etc. can be considered above this quota. The selection criterion is at the discretion of the college. The student should not have any academic backlog (Essential Repeat). The sole/single supervisor must have a Ph.D. degree. Not more than two candidates would be enrolled under same supervisor.

3. At the time of submission of teaching work-load of the teachers by the college to the Department (Department of Physics and Astrophysics, Delhi University), the supervisor shall submit the proposal (200-300 words; not more than one full A4 page) of the proposed dissertation. Along with that four names of the external examiners from any college of Delhi University (other than the own college of the supervisor) or any department of Delhi University can be suggested. The committee of courses of the department may appoint any one teacher as an external examiner from the proposed list of external examiners.

4. No topic would be repeated from the topics allotted by the supervisor in the previous years, so that the work or dissertation could be distinct every time. The ‘proposal’ should include the topic, plan of work, and clearly state the expected deliverables. The topic must be well defined. The abstract should clearly explain the significance of the suggested problem. It must emphasize the specific skills which the student shall be learning during the course of dissertation, for example, some computational skill or literature survey, etc. Both internal (supervisor) and external examiners will assess the student at the end of the semester and award marks jointly, according to the attached scheme.
5. Other than the time for pursuing dissertation work, there must be at least 2 hours of interaction per week, of the student with the supervisor. The student has to maintain a “Log Book” to summarize his/her weekly progress which shall be duly signed by the supervisor. Experimental work should be carried out in the parent college or any other college or the Department in Delhi University with the consent of a faculty member there. Unsupervised work carried out at research institutions/laboratories is to be discouraged.

6. The dissertation report should be of around 30 pages. It must have minimum three chapters namely (1) Introduction, (2) the main work including derivations/experimentation and Results, and (3) Discussion and Conclusion. At the end, adequate references must be included. Plagiarism should be avoided by the student and this should be checked by the supervisor.

7. It is left to the discretion of the college if it can allow relaxation of two teaching periods (at the most two periods per week to the supervisor, irrespective of the number of students enrolled under him/her for dissertation). The evaluation/presentation of the dissertation must be done within two weeks after the exams are over. For the interest of the students it is advised that college may organize a workshop for creating awareness amongst students. Any teacher who is not Ph.D. holder can be Co-supervisor with the main supervisor.

Assessment of dissertation

MARKING SCHEME for Dissertation:

- **30 marks:** Internal assessment based on performance like sincerity, regularity, etc. Awarded by: Supervisor
- **40 marks:** Written Report (including content and quality of work done). Awarded by: Supervisor and External Examiner.
- **30 marks:** Presentation*. Awarded by: Supervisor and External Examiner.

*All Dissertation presentations should be open. Other students/faculty should be encouraged to attend.
9.3 SKILL- ENHANCEMENT COURSES - (SEC)

Students should not take the same SEC paper in different Semesters

SEC: Computational Physics Skills (32223902)
Credit: 04 (Theory-02, Practical-02)
Theory: 30 Hours
Practical: 60 Hours

Course Objective

- This course is intended to give an insight into computers and their scientific applications.
- To familiarize students with use of computer to solve physics problems.
- To teach a programming language namely FORTRAN and data visualization using Gnuplot. To teach them to prepare long formatted document using latex.

Course Learning Outcomes

Students will be able to
- Use computers for solving problems in Physics.
- Prepare algorithm and flowchart for solving a problem.
- Use Linux commands on terminal
- Use an unformatted editor to write sources codes.
- Learn “Scientific Word Processing”, in particular, using LaTeX for preparing articles, papers etc. which include mathematical equations, picture and tables.
- Learn the basic commands of Gnuplot.

Unit 1

Introduction: Importance of computers in Physics, paradigm for solving physics problems. Usage of editor in Linux.

Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of \(\sin(x) \) as a series, algorithm for plotting (1) Lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal.

(4 Lectures)

Unit 2

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO- CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:
1. Exercises on syntax on usage of FORTRAN
2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.
3. To print out all natural even/ odd numbers between given limits.
4. To find maximum, minimum and range of a given set of numbers.
5. Calculating Euler number using \(\exp(x) \) series evaluated at \(x=1 \)

Unit 3

Scientific word processing: Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages. Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.

Unit 4

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. Importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot.

PRACTICAL (60 Hours)

PRACTICALS: SEC LAB : COMPUTATIONAL PHYSICS SKILLS LAB

"Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.
Hands on exercises: (Use of latest FORTRAN compiler is advisable.)

1. To compile a frequency distribution and evaluate mean, standard deviation etc.
2. To evaluate sum of finite series and the area under a curve.
3. To find the product of two matrices
4. To find a set of prime numbers and Fibonacci series.
5. To write program to open a file and generate data for plotting using Gnuplot.
6. Plotting trajectory of a projectile projected horizontally.
7. Plotting trajectory of a projectile projected making an angle with the horizontally.
8. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an eps file and as a pdf file.
9. To find the roots of a quadratic equation.
10. Motion of a projectile using simulation and plot the output for visualization.
11. Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
12. Motion of particle in a central force field and plot the output for visualization.

References

Essential Readings

Additional Readings

1. Computer Programming in Fortran 77. V. Rajaraman (Publisher:PHI).
2. Computational Physics - A practical Introduction to computational Physics and Scientific Computing; by Konstantinos N. Anagnostopoulos
Course Objective

• To develop an understanding of basic principles of electricity and its household applications.
• To impart basic knowledge of solid state devices and its applications, understanding of electrical wiring and installation.

Course Learning Outcomes

At the end of this course, students will be able to

• Demonstrate good comprehension of basic principles of electricity including ideas about voltage, current and resistance.
• Develop the capacity to analyze and evaluate schematics of power efficient electrical circuits while demonstrating insight into tracking of interconnections within elements while identifying current flow and voltage drop.
• Gain knowledge about generators, transformers and electric motors. The knowledge would include to interfacing aspects and consumer defined control of speed and power.
• Acquire capacity to work theoretically and practically with solid-state devices.
• Delve into practical aspects related to electrical wiring like various types of conductors and cables, wiring-Star and delta connections, voltage drop and losses.
• Measure current, voltage, power in DC and AC circuits acquire proficiency in fabrication of regulated power supply.
• Develop capacity to identify and suggest types and sizes of solid and stranded cables, conduit lengths, cable trays, splices, crimps, terminal blocks and solder.

Unit 1

(3 Lectures)

(4 Lectures)

Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers. (2 Lectures)

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters and motors. Speed & power of ac motor. (3 Lectures)

Unit 2

Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources. (3 Lectures)

Network Theorems: (1) Thevenin' theorem (2) Norton theorem (3) Superposition theorem (4) Maximum Power Transfer theorem. (3 Lectures)

PRACTICAL (60 Hours)

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

At least 08 Experiments from the following:

1. Series and Parallel combinations: Verification of Kirchoff’s law.
2. To verify network theorems: (I) Thevenin (II) Norton (III) Superposition theorem (IV) Maximum power transfer theorem
3. To study frequency response curve of a Series LCR circuit.
4. To verify: (1) Faraday’s law and (2) Lenz’s law.
5. Programming with Pspice/NG spice.
6. Demonstration of AC and DC generator.
7. Speed of motor
8. To study the characteristics of a diode.
9. To study rectifiers (I) Half wave (II) Full wave rectifier (III) Bridge rectifier
10. Power supply (I) C-filter, (II) π- filter
11. Transformer – Step up and Step down
12. Preparation of extension board with MCB/fuse, switch, socket-plug, Indicator.
13. Fabrication of Regulated power supply.

It is further suggested that students may be motivated to pursue semester long dissertation wherein he/she may do a hands-on extensive project based on the extension of the practicals enumerated above.

References for Theory

Essential Readings

2. Performance and design of AC machines - M G Say ELBS Edn.

References for Laboratory

SEC: Renewable Energy and Energy Harvesting (32223905)

Credit: 04 (Theory-02, Practical-02)

Theory: 30 Hours

Practical: 60 Hours

Course Objective

- To impart knowledge and hands on learning about various alternate energy sources.
- This paper describes the ways of harvesting energy using wind, solar, mechanical, ocean, geothermal energy and so on. To review the working of various energy harvesting systems which are installed worldwide.

Course Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes:
• Knowledge of various sources of energy for harvesting
• Understand the need of energy conversion and the various methods of energy storage
• A good understanding of various renewable energy systems, and its components.
• Knowledge about renewable energy technologies, different storage technologies, distribution grid, smart grid including sensors, regulation and their control.
• Design the model for sending the wind energy or solar energy plant.
• The students will gain hand on experience of:
 (i) different kinds of alternative energy sources,
 (ii) conversion of vibration into voltage using piezoelectric materials,
 (iii) conversion of thermal energy into voltage using thermoelectric modules.

Unit 1

Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, bio-gas generation, geothermal energy tidal energy, Hydroelectricity.

(3 Lectures)

Unit 2

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photo-voltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

(6 Lectures)

Unit 3

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.

(3 Lectures)

Unit 4

Geothermal Energy: Geothermal Resources, Geothermal Technologies.
Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources. Rain water harvesting.

(9 Lectures)

Unit 5

Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezo-electricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power.
Electromagnetic Energy Harvesting: Linear generators, physical/mathematical models, recent applications Carbon captured technologies, cell, batteries, power consumption
Environmental issues and Renewable sources of energy, sustainability. Merits of Rain Water harvesting.

(9 Lectures)

PRACTICAL (60 Hours)
PRACTICALS: SEC LAB: RENEWABLE ENERGY AND ENERGY HARVESTING SKILLS LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

Demonstrations and Experiments:

1. Demonstration of Training modules on Solar energy, wind energy, etc.
2. Conversion of vibration to voltage using piezoelectric materials
3. Conversion of thermal energy into voltage-driven thermo-electric modules.

References for Theory

Essential Readings

Additional Readings

References for Laboratory

1. Non-conventional energy sources, B.H. Khan, McGraw Hill 60
SEC: Engineering Design and Prototyping/Technical Drawing
(32223906)
Credit: 04 (Theory-02, Practical-02)
Theory: 30 Hours
Practical: 60 Hours

Course Objective

• To introduce the students to modern visualization techniques and their applications in diverse areas including computer aided design.
• To offers hands-on experience of engineering drawing based on knowledge gained using computer aided designing software.

Course Learning Outcomes

This course will enable the student to be proficient in:
• Understanding the concept of a sectional view – visualizing a space after being cut by a plane. How The student will be able to draw and learn proper techniques for drawing an aligned sections.
• Understanding the use of spatial visualization by constructing an orthographic multi view drawing.
• Drawing simple curves like ellipse, cycloid and spiral, Orthographic projections of points, lines and of solids like cylinders, cones, prisms and pyramids etc.
• Using Computer Aided Design (CAD) software and AutoCAD techniques.

Unit 1

(4 Lectures)

Unit 2

(10 Lectures)

Unit 3

CAD Drawing: Introduction to CAD and Auto CAD, precision drawing and drawing aids, Geometric shapes, Demonstrating CAD specific skills (graphical user interface, create, retrieve, edit, and use symbol libraries). Use of Inquiry commands to extract drawing data. Control entity properties. Demonstrating basic skills to produce 2-D drawings. Annotating in Auto CAD with text and hatching, layers, templates and design centre, advanced plotting (layouts, viewports), office standards, dimensioning, internet and collaboration, Blocks, Drafting symbols, attributes, extracting data. Basic printing and editing tools, plot/print drawing to appropriate scale.
(10 Lectures)
Unit 4

Computer Aided Design and Prototyping: 3D modeling with AutoCAD (surfaces and solids), 3D modeling with Sketchup, 3D designs, Assembly: Model Editing; Lattice and surface optimization; 2D and 3D packing algorithms, Additive Manufacturing Ready Model Creation (3D printing), Technical drafting and Documentation.

PRACTICAL (60 Hours)
PRACTICALS: SEC LAB : ENGINEERING DESIGN AND PROTOTYPING/TECHNICAL DRAWING LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

Five experiments based on the above theory.
Teacher may design at least five experiments based on the above syllabus.

References for Theory

Essential Readings

1. Engineering Graphic, K. Venugopal and V. Raja Prabhu, New Age International

Additional Readings

Course Objective

- This paper provides the conceptual understanding of various branches of modern optics to the students.
- This course introduces basic principles of LASER, Holography and signal transmission via optical fiber.

Course Learning Outcomes

Students will be able to:

- Understand basic lasing mechanism qualitatively, types of lasers, characteristics of laser light and its application in developing LED, Holography.
- Gain concepts of Fourier optics and Fourier transform spectroscopy.
- Understand basic principle and theory of Holography.
- Grasp the idea of total internal reflection and learn the characteristics of optical fibres.

Unit 1

Photo-sources and Detectors

Lasers: an introduction, Planck’s radiation law (qualitative idea), Energy levels, Absorption process, Spontaneous and stimulated emission processes, Theory of laser action, Population of energy levels, Einstein’s coefficients and optical amplification, properties of laser beam, Ruby laser, He-Ne laser, and semiconductor lasers; Light Emitting Diode (LED) and photo-detectors. (9 lectures)

Unit 2

Fourier Optics and Fourier Transform Spectroscopy (Qualitative explanation) Concept of Spatial frequency filtering, Fourier transforming property of a thin lens, Fourier Transform Spectroscopy (FTS): measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry, and forensic science. (6 lectures)

Unit 3

Holography

Introduction: Basic principle and theory: recording and reconstruction processes, Requirements of holography- coherence, etc. Types of holograms: The thick or volume hologram, Multiplex hologram, white light reflection hologram; application of holography in microscopy, interferometry, and character recognition. (6 lectures)

Unit 4
Photonics: Fibre Optics

Optical fibres: Introduction and historical remarks, Total Internal Reflection. Basic characteristics of the optical fibre: Principle of light propagation through a fibre, the coherent bundle, The numerical aperture, Attenuation in optical fibre and attenuation limit; Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating.

(9 lectures)

PRACTICAL (60 Hours)

PRACTICALS: SEC LAB : APPLIED OPTICS LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

Experiments on Lasers:

1. To determine the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser.
2. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-Ne or solid state laser.
3. To find the polarization angle of laser light using polarizer and analyzer d. Thermal expansion of quartz using laser.
4. To determine the wavelength and angular spread of laser light by using plane diffraction grating.

Experiments on Semiconductor Sources and Detectors:

5. V-I characteristics of LED.
6. Study the characteristics of solid state laser.
7. Study the characteristics of LDR.

Experiments on Fourier Optics:

10. Optical image differentiation.
11. Fourier optical filtering.
12. Construction of an optical 4f system

Experiments on Fourier Transform Spectroscopy:

To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

Experiments on Holography and interferometry:
13. Recording and reconstruction of holograms (Computer simulation can also be done).
14. To construct a Michelson interferometer or a Fabry Perot interferometer.
15. To determine the wavelength of sodium light by using Michelson’s interferometer.
16. To measure the refractive index of air.

Experiments on Fibre Optics:

17. To measure the numerical aperture of an optical fibre.
18. To measure the near field intensity profile of a fibre and study its refractive index profile.
19. To study the variation of the bending loss in a multimode fibre.
20. To determine the power loss at a splice between two multimode fibre.
21. To determine the mode field diameter (MFD) of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern.

References

Essential Readings

Additional Readings

Course Objective
The aim of this course is to impart theoretical knowledge to the students and also to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomena and basic forecasting techniques.

Course Learning Outcomes
The student will gain the following:

• Acquire basic knowledge of the elements of the atmosphere, its composition at various heights, variation of pressure and temperature with height.
• To learn basic techniques to measure temperature and its relation with cyclones and anti-cyclones.
• Knowledge of simple techniques to measure wind speed and its directions, humidity and rainfall.
• Understanding of absorption, emission and scattering of radiations in atmosphere; Radiation laws.
• Knowledge of global wind systems, jet streams, local thunderstorms, tropical cyclones, tornadoes and hurricanes.
• Knowledge of climate and its classification. Understanding various causes of climate change like global warming, air pollution, aerosols, ozone depletion, acid rain.
• Develop skills needed for weather forecasting, mathematical simulations, weather forecasting methods, types of weather forecasting, role of satellite observations in weather forecasting, weather maps etc. Uncertainties in predicting weather based on statistical analysis.
• Develop ability to do weather forecasts using input data.
• In the laboratory course, students should be able to learn: Principle of the working of a weather Station, Study of Synoptic charts and weather reports, Processing and analysis of weather data, Reading of Pressure charts, Surface charts, Wind charts and their analysis.

Unit 1
Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement.
(9 Lectures)

Unit 2
Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws.
(4 Lectures)

Unit 3
Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes.

(3 Lectures)

Unit 4

Climate and Climate Change: Climate - Its classification; causes of climate change; global warming and its outcomes; air pollution and its measurement, particulate matters PM 2.5, PM 10. Health hazards due to high concentration of PM2.5; aerosols, ozone depletion.

(6 Lectures)

Unit 5

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.

(8 Periods)

PRACTICAL (60 Hours)

PRACTICALS: SEC LAB : WEATHER FORECASTING LAB

"Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

Demonstrations and Experiments:

1. Study of synoptic charts & weather reports, working principle of weather station.
2. Processing and analysis of weather data:
 (a) To calculate the sunniest time of the year.
 (b) To study the variation of rainfall amount and intensity.
 (c) To observe the sunniest/driest day of the week.
 (d) To examine the maximum and minimum temperature throughout the year.
 (e) To evaluate the relative humidity of the day.
 (f) To examine the rainfall amount month wise.
4. Formats and elements in different types of weather forecasts/ warning (both aviation and non-aviation).
5. Simulation of weather system
6. Field visits to India Meteorological department and National center for medium range weather forecasting

References

Essential Readings

SEC: Introduction to Physical Computing (xxx1)
Credit: 04 (Theory-02, Practical-02)
Theory: 30 Hours
Practical: 60 Hours

Course Objective

• Exposure to the elements of physical computing using embedded computers to enable the student to implement experimental setups in physics.
• To offer an opportunity to learn automation and to design an appropriate system for laboratory experiments using computer software in a project based learning environment.

Course Learning Outcomes

The students will be able to
• Understand the evolution of the CPU from microprocessor to microcontroller and embedded computers from a historical perspective.
• Operate basic electronic components and analog and digital electronics building blocks including power supply and batteries.
• Use basic laboratory equipment for measurement and instrumentation.
• Understand the Arduino ecosystem and to write simple Arduino programs (sketches)
• Understand sensor characteristics and how to select a suitable sensor for various applications.
• Read digital and analog data and produce digital and analog outputs from an embedded computer.
• Understand how to interface an embedded computer to the physical environment.
• Visualize the needs of a stand alone embedded computer and implement a simple system using Arduino.

Unit 1
Brief overview of a computer. Evolution from CPU to Microprocessor to microcontroller. Introduction to Arduino. Overview of basic electronic components (R, L, C, diode, BJT, MOSFET etc.) and circuits, 555 timer, logic gates, logic function ICs, power supply and batteries. (4 Lectures)

Unit 2

Capturing schematic diagrams. Using free software such as Eagle CAD. Using basic lab instruments – DMM, oscilloscope, signal generator etc. (6 Lectures)

Unit 3

Understanding Arduino programming. Downloading and installing Arduino IDE. Writing an Arduino sketch. Programming fundamentals: program initialization, conditional statements, loops, functions, global variables. (5 Lectures)

Unit 4

Digital Input and Output. Measuring time and events. Pulse Width Modulation. (6 Lectures)

Unit 5

Analog Input and Output. Physical Interface: sensors and actuators. (6 Lectures)

Unit 6

Communication with the outside world. System Integration and debugging. (3 Lectures)

PRACTICAL (60 Hours)
PRACTICALS: SEC LAB: INTRODUCTION TO PHYSICAL COMPUTING LAB

"Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

1. Hello LED: Connect a LED to a digital output pin and turn it on and off.
2. Hello Switch: Read a switch a toggle an LED when the switch is pressed and released.
3. Hello ADC: Connect a potentiometer to an ADC input and print the analog voltage on the serial monitor.
4. Hello Blink: Read a switch and changing the LED blink rate every time the switch is pressed and released.
5. Hello PWM: Write a Pulse Width Modulation code in software and vary the LED intensity.
6. Hello Random: Read a switch and every time the switch is pressed and released, generate and print a random number on the serial monitor.
7. Hello Random2: Connect a Seven Segment Display (SSD) and print the random number on this display each time a switch is pressed and released. Collect large data sample and plot relative frequency of occurrence of each ‘random’ number.
8. Hello LCD: Connect a (16X2) LCD to an Arduino and print ‘Hello World’.
9. Hello LCD2: Connect a temperature sensor to an ADC input and print the temperature on the LCD.
10. Hello PWM2: Connect a RGB LED and 3 switches. Use hardware PWM feature of the Arduino and change the relative intensity of each of the LEDs of the RGB LED and generate large number of colors.

Mini Projects:

1. Connect 2 SSDs and every time a switch is pressed and released, print 2 random numbers on the two SSDs.
2. Connect a switch and 4 RGB LEDs in a ‘Y’ configuration. Change the LED lighting patterns each time a switch is pressed and released (total 4095 patterns possible).
3. Arrange acrylic mirrors in a triangle and make a LED kaleidoscope using the RGB LEDs as the light source.
4. Connect a photo-gate mechanism to a bar pendulum. Verify that the period of oscillation is independent of the amplitude for small amplitudes. What happens when the amplitude is large?
5. Connect 8 switches and a small speaker and an audio amplifier and make a piano.
6. Connect 2 sets of 3 switches for two players. Connect LCD and implement a ‘rock-paper-scissors’ game.

References

Essential Readings

SEC: Numerical Analysis (xxx2)
Credit: 04 (Theory-02, Practical-02)
Theory: 30 Hours
Practical: 60 Hours

Course Objective

- The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists.
- To expose students to fundamental computational physics skills and hence enable them to solve a wide range of physics problems.
- To help students develop critical skills and knowledge that will prepare them not only for doing fundamental and applied research but also prepare them for a wide variety of careers.

Course Learning Outcomes

Theory:
After completing this course, student will be able to
- approximate single and multi-variable function by Taylor's Theorem.
- Solve first order differential equations and apply it to physics problems.
- solve linear second order homogeneous and non-homogeneous differential equations with constant coefficients.
- Calculate partial derivatives of function of several variables
- Understand the concept of gradient of scalar field and divergence and curl of vector fields.
- perform line, surface and volume integration
- Use Green's, Stokes' and Gauss's Theorems to compute integrals

Practical:
After completing this course, student will be able to:
- design, code and test simple programs in C++ learn Monte Carlo techniques, fit a given data to linear function using method of least squares find roots of a given non-linear function
- Use above computational techniques to solve physics problems

Unit 1

(2 Lectures)

(6 Lectures)
Unit 2

Unit 3
Least Square fitting: (1) Fitting a straight line. (2) Non-linear curve fitting: (a) Power function, (b) Polynomial of nth degree, and (c) Exponential Function. (3) Linear Weighed Least square Approximation. (5 Lectures)

Unit 4
Numerical Differentiation: (1) Newton’s interpolation Formulas & (2) Cubic Spline Method, Errors in Numeric Differentiation. Maximum and Minimum values of a Tabulated Function. (4 Lectures)

Solution of Ordinary Differential Equations: First Order ODE’s: solution of Initial Value problems: (1) Euler’s Method, (2) Modified Euler’s method. (4 Lectures)

PRACTICAL (60 Hours)
PRACTICALS: SEC LAB: NUMERICAL ANALYSIS COMPUTING LAB

At least 08 Experiments from the following:

"Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab."

Teacher may give a long duration project based on this paper.

Algebraic and transcendental equation:
1. To find the roots of an algebraic equation by Bisection method.
2. To find the roots of an algebraic equation by Secant method.
3. To find the roots of an algebraic equation by Newton-Raphson method.
4. To find the roots of a transcendental equation by Bisection method. Interpolation
5. To find the forward difference table from a given set of data values.
6. To find a backward difference table from a given set of data values. Curve fitting
7. To fit a straight line to a given set of data values.
8. To fit a polynomial to a given set of data values.
9. To fit an exponential function to a given set of data values.

Differentiation:
10. To find the first and second derivatives near the beginning of the table of values of (x,y).
11. To find the first and second derivatives near the end of the table of values of (x,y).

Integration
12. To evaluate a definite integral by trapezoidal rule.
13. To evaluate a definite integral by Simpson 1/3 rule.
14. To evaluate a definite integral by Simpson 3/8 rule.
15. To evaluate a definite integral by Gauss Quadrature rule.

Differential Equations:

16. To solve differential equations by Euler’s method.
17. To solve differential equations by modified Euler’s method.

References

Essential Readings

References for Laboratory

Steering Committee
LOCF (CBCS) Undergraduate Physics courses revision 2019
Department of Physics & Astrophysics, University of Delhi

1. Prof. Sanjay Jain – HoD (Chairman)
2. Prof. A. G. Vedeshwar – (Coordinator)
3. Prof. Vinay Gupta – (Convener)
4. Prof. Debajyoti Choudhury
5. Prof. P. Das Gupta
6. Prof. S. Annapoorni
7. Prof. H.P. Singh
8. Prof. T.R. Seshadri
9. Prof. Anjan Dutta
10. Prof. S.K. Mandal
11. Prof. Kirti Ranjan
12. Dr. G.S. Chilana (Department of Physics, Ramjas College)
13. Dr. Mallika Verma (Department of Physics, Miranda House)
14. Dr. Anuradha Gupta (Department of Physics, SGTB Khalsha College)
15. Dr. Sangeeta D. Gadre (Department of Physics, Kirori Mal College)
16. Dr. Jacob Cherian (Department of Physics, St. Stephens’ College)
17. Dr. Vandana Luthra (Department of Physics, Gargi College)
18. Dr. Mamta (Department of Physics, SGTB Khalsa College)
19. Dr. P.K. Jha (Department of Physics, Deen Dyal Upadhyaya College)
20. Dr. Sanjay Kumar (Department of Physics, St. Stephens’ College)
21. Dr. Abhinav Gupta (Department of Physics, St. Stephen's College)
22. Dr. Monika Tomar (Department of Physics, Miranda House)
23. Dr. Roshan Kshetrimayum (Department of Physics, Kirori Mal College)
24. Mr. Ashish Tyagi (Department of Physics, Swami Shraddhanand College)
25. Dr. Shalini Lumb Talwar (Department of Physics, Maitreyi College)
26. Dr. Shiva Upadhyay (Department of Physics, Swami Shraddhanand College)
27. Dr. Divya Haridas (Department of Physics, Keshav Mahavidyalaya)
28. Dr. Chetana Jain (Department of Physics, Hansraj College)
<table>
<thead>
<tr>
<th>Group</th>
<th>Papers</th>
<th>Name of faculty</th>
<th>Role</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>- Waves and Optics (Hons. core /GE)</td>
<td>Prof. Kirti Ranjan</td>
<td>Coordinator</td>
<td>Department of Physics & Astrophysics</td>
</tr>
<tr>
<td></td>
<td>- Electricity and magnetism (Hons. core/GE)</td>
<td>Dr. Sangeeta D. Gadre</td>
<td>Convenor</td>
<td>Kirori Mal College</td>
</tr>
<tr>
<td></td>
<td>- Electromagnetic theory (Hons. core)</td>
<td>Dr. Pragati Ishdhir</td>
<td></td>
<td>Hindu College</td>
</tr>
<tr>
<td></td>
<td>- Electricity and magnetism (Prog. core)</td>
<td>Dr. K.C. Singh</td>
<td></td>
<td>Sri Venkateswara College</td>
</tr>
<tr>
<td></td>
<td>- Waves and Optics (Prog. core)</td>
<td>Dr. Pushpa Bindal</td>
<td>Member</td>
<td>Kalindi College</td>
</tr>
<tr>
<td></td>
<td>- Electrical circuits and Networks (SEC)</td>
<td>Dr. Geetanjali Sethi</td>
<td></td>
<td>St. Stephen's College</td>
</tr>
<tr>
<td></td>
<td>- Applied Optics (SEC)</td>
<td>Dr. Pradeep Kumar</td>
<td></td>
<td>Hansraj College</td>
</tr>
<tr>
<td></td>
<td>- Introduction to Physical Computing (SEC)</td>
<td>Dr. N. Chandrlika</td>
<td></td>
<td>Gargi College</td>
</tr>
<tr>
<td>II</td>
<td>- Elements of Modern Physics (Hons. core/GE)</td>
<td>Prof. P. Das Gupta</td>
<td>Coordinator</td>
<td>Department of Physics & Astrophysics</td>
</tr>
<tr>
<td></td>
<td>- Quantum Mechanics and applications (Hons. Core)</td>
<td>Dr. P.K. Jha</td>
<td>Convenor</td>
<td>Deen Dyal Upadhyaya college</td>
</tr>
<tr>
<td></td>
<td>- Elements of Modern Physics (Prog. DSE)</td>
<td>Dr. N. Santakrus Singh</td>
<td></td>
<td>Hindu College</td>
</tr>
<tr>
<td></td>
<td>- Quantum Mechanics (Prog. DSE/GE)</td>
<td>Dr. Punita Verma</td>
<td></td>
<td>Kalindi College</td>
</tr>
<tr>
<td></td>
<td>- Advanced Quantum Mechanics (Hons. DSE)</td>
<td>Dr. Siddharth Lahon</td>
<td></td>
<td>Kirorimal College</td>
</tr>
<tr>
<td></td>
<td>- Renewable energy and Energy harvesting (SEC)</td>
<td>Dr. Onkar Mangla</td>
<td></td>
<td>Daulat Ram College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Sandhya</td>
<td></td>
<td>Miranda House</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>Coordinator/Convenor</td>
<td>College</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>----------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Thermal Physics (Hons. Core)</td>
<td>Prof. S. Annapoorni</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistical Mechanics (Hons. Core)</td>
<td>Dr. Anuradha Gupta</td>
<td>SGTB Khalsa College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Physics and Statistical Mechanics (Program core/GE)</td>
<td>Dr. Deepak Jain</td>
<td>Deen Dyal Upadhyaya college</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Nimmi Singh</td>
<td>SGTB Khalsa College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Ashok Kumar</td>
<td>Ramjas College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Aditya Saxena</td>
<td>Deshbandhu College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Maya Verma</td>
<td>Hansraj College</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Solid State Physics (Hons. Core)</td>
<td>Prof. S. Annapoorni</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid State Physics (Prog. DSE/GE)</td>
<td>Dr. Divya Haridas</td>
<td>Keshav Mahavidyalaya</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nanomaterials and Applications (DSE-Hons.+ Prog.)/GE</td>
<td>Dr. Mamta Bhatia</td>
<td>AND College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Rajveer Singh</td>
<td>ARSD College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Shiva Upadhyaya</td>
<td>S.S.N. College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Harish K. Yadav</td>
<td>St. Stephen's College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Rashmi Menon</td>
<td>Kalindi College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Yogesh Kumar</td>
<td>Deshbandhu College</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Mathematical Physics-I (Hons. Core)</td>
<td>Prof. T.R. Seshadri</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical Physics-II (Hons. Core)</td>
<td>Dr. G.S. Chilana</td>
<td>Ramjas College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical Physics -III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td>Courses</td>
<td>Faculty</td>
<td>College</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>(Hons. Core)</td>
<td>Advanced Mathematical Physics (Hons. DSE)</td>
<td>Dr. Abha Dev Habib</td>
<td>Miranda House</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical Physics (Program DSE/ Hons. GE)</td>
<td>Dr. Agam Kumar Jha</td>
<td>Kirori Mal College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Mathematical Physics -II (Hons. DSE)</td>
<td>Dr. Subhash Kumar</td>
<td>AND College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computational Physics Skills (SEC)</td>
<td>Dr. Mamta</td>
<td>SGTB Khalsa College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical Analysis (SEC)</td>
<td>Dr. Neetu Aggarwal</td>
<td>Daulat Ram College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear Algebra & Tensor Analysis (DSE)</td>
<td>Dr. Bhavna Vidhani</td>
<td>Hansraj College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Ajay Mishra</td>
<td>Dyal Singh College</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Mechanics (Hons. Core/GE)</td>
<td>Prof. A. G. Vedeshwar</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanics (Prog. Core)</td>
<td>Dr. Ashish Tyagi</td>
<td>SSN College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Dynamics (DSE/GE)</td>
<td>Dr. Shalini Lumb Talwar</td>
<td>Maitreyi College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Classical Dynamics (DSE)</td>
<td>Dr. Vandana Arora</td>
<td>Keshav Mahavidyalaya</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics Workshop Skills (SEC)</td>
<td>Dr. Arvind Kumar</td>
<td>Ramjas College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Chitra Vaid</td>
<td>Bhagini Nivedita College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Omwati Rana</td>
<td>Daulat Ram College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Sunita Singh</td>
<td>Miranda House</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Pranav Kumar</td>
<td>Kirori Mal College</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Pooja Devi</td>
<td>Shyam lal College</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Nuclear and particle Physics (Hons. DSE/GE)</td>
<td>Prof. Samit Mandal</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuclear and particle physics (Prog. DSE)</td>
<td>Dr. Vandana Luthra</td>
<td>Gargi College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiation Safety (SEC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Dr. Namrata</td>
<td>Member</td>
<td>S.S.N. College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Supriti Das</td>
<td></td>
<td>Gargi College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Punit Tyagi</td>
<td></td>
<td>Ramjas College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Anjan Datta</td>
<td>Coordinator</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Jacob Cherian</td>
<td>Convenor</td>
<td>St. Stephen's College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. S.K. Dhaka</td>
<td></td>
<td>Rajdhani College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Sanjay Kumar</td>
<td></td>
<td>St. Stephen's College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Sushil Singh</td>
<td>Member</td>
<td>SGTB Khalsa College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Chetna Jain</td>
<td></td>
<td>Hansraj College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Ayushi Paliwal</td>
<td></td>
<td>Deshbandhu College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Rekha Gupta</td>
<td></td>
<td>St. Stephen's College</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Prof. Vinay Gupta</td>
<td>Coordinator</td>
<td>Department of Physics & Astrophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Mallika Verma</td>
<td>Convenor</td>
<td>Miranda House</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Shashi Bala</td>
<td></td>
<td>Ramjas College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Arijit Chowdhuri</td>
<td></td>
<td>AND College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Anjali Sharma</td>
<td></td>
<td>ARSD College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Kajal Jindal</td>
<td>Member</td>
<td>Kirori Mal College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Poonam Jain</td>
<td></td>
<td>Sri Aurobindo College</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Savita Sharma</td>
<td></td>
<td>Kalindi College</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Dissertation-E</td>
<td>Dr. Alka Garg</td>
<td>Gargi College</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Analog systems and Applications (Hons. Core)</td>
<td>Prof. Vinay Gupta</td>
<td>Coordinator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Experimental techniques (DSE)</td>
<td>Dr. Monika Tomar</td>
<td>Convenor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Physics of Device and Communication (DSE)</td>
<td>Dr. Sanjay Tandon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Communication System (DSE/GE)</td>
<td>Dr. Sangeeta Sachdeva</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Network Analysis and Analog Electronics-E (DSE)</td>
<td>Dr. Roshan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Communication Electronics –E</td>
<td>Dr. Kuldeep Kumar</td>
<td>Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Semiconductor Devices Fabrication - E(DSE)</td>
<td>Dr. Reema Gupta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Photonic Devices and Power Electronics -E (DSE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Antenna theory and wireless network -E (DSE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Electrical circuit network skills-Prog. SEC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XI</th>
<th>Practical of all Courses</th>
<th>Prof. Vinay Gupta</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dr. Sanjay Kumar</td>
<td>Convenor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. P. D. Gupta</td>
<td>Member</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. A.G. Vedeshwar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Physics & Astrophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deen Dyal Upadhyaya college</td>
</tr>
<tr>
<td>St. Stephen's College</td>
</tr>
<tr>
<td>Kirorimal College</td>
</tr>
<tr>
<td>SGTB Khalsa College</td>
</tr>
<tr>
<td>Hindu College</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Prof. Samit Mandal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dr. G.S. Chilana</td>
</tr>
<tr>
<td>Dr. Mallika Verma</td>
</tr>
<tr>
<td>Dr. Anuradha Gupta</td>
</tr>
<tr>
<td>Dr. Monika Tomar</td>
</tr>
<tr>
<td>Dr. Sangeeta D. Gadre</td>
</tr>
<tr>
<td>Dr. Mamta</td>
</tr>
<tr>
<td>Dr. Vandana Luthra</td>
</tr>
<tr>
<td>Dr. Roshan</td>
</tr>
</tbody>
</table>
Final drafting team

LOCF (CBCS) Undergraduate Physics courses revision 2019
Department of Physics & Astrophysics, University of Delhi

1. Prof. Sanjay Jain
2. Prof. A. G. Vedeshwar
3. Prof. Vinay Gupta
4. Prof. Samit K. Mandal
5. Dr. Sanjay Kumar – St. Stephens’ College
6. Dr. Sangeeta Gadre – Kirori Mal College
7. Dr. Mamta – SGTB Khalsa College
8. Dr. Punita Verma – Kalindi College
9. Dr. Rajveer Singh – ARSD College
10. Dr. Yogesh Kumar – Deshbandhu College
11. Mrs. Poonam Jain – Sri Aurobindo College
12. Dr. Ajay Kumar – Sri Aurobindo College